A Comparison of Three Automated Root-Knot Nematode Egg Counting Approaches Using Machine Learning, Image Analysis, and a Hybrid Model

Meloidogyne spp. (root-knot nematodes [RKNs]) are a major threat to a wide range of agricultural crops worldwide. Breeding crops for RKN resistance is an effective management strategy, yet assaying large numbers of breeding lines requires laborious bioassays that are time-consuming and require exper...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 108(2024), 9 vom: 23. Sept., Seite 2625-2629
1. Verfasser: Fraher, Simon P (VerfasserIn)
Weitere Verfasser: Watson, Mark, Nguyen, Hoang, Moore, Savannah, Lewis, Ramsey S, Kudenov, Michael, Yencho, G Craig, Gorny, Adrienne M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article Comparative Study automated counting convolutional neural network meloidogyne root-knot nematode
LEADER 01000caa a22002652 4500
001 NLM373006233
003 DE-627
005 20240925232331.0
007 cr uuu---uuuuu
008 240530s2024 xx |||||o 00| ||eng c
024 7 |a 10.1094/PDIS-01-24-0217-SR  |2 doi 
028 5 2 |a pubmed24n1548.xml 
035 |a (DE-627)NLM373006233 
035 |a (NLM)38812368 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fraher, Simon P  |e verfasserin  |4 aut 
245 1 2 |a A Comparison of Three Automated Root-Knot Nematode Egg Counting Approaches Using Machine Learning, Image Analysis, and a Hybrid Model 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.09.2024 
500 |a Date Revised 24.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Meloidogyne spp. (root-knot nematodes [RKNs]) are a major threat to a wide range of agricultural crops worldwide. Breeding crops for RKN resistance is an effective management strategy, yet assaying large numbers of breeding lines requires laborious bioassays that are time-consuming and require experienced researchers. In these bioassays, quantifying nematode eggs through manual counting is considered the current standard for quantifying establishing resistance in plant genotypes. Counting RKN eggs is highly laborious, and even experienced researchers are subject to fatigue or misclassification, leading to potential errors in phenotyping. Here, we present three automated egg counting models that rely on machine learning and image analysis to quantify RKN eggs extracted from tobacco and sweet potato plants. The first method relied on convolutional neural networks trained using annotated images to identify eggs (M. enterolobii R2 = 0.899, M. incognita R2 = 0.927, M. javanica R2 = 0.886), whereas a second contour-based approach used image analysis to identify eggs from their morphological characteristics and did not rely on neural networks (M. enterolobii R2 = 0.977, M. incognita R2 = 0.990, M. javanica R2 = 0.924). A third hybrid model combined these approaches and was able to detect and count eggs nearly as well as human raters (M. enterolobii R2 = 0.985, M. incognita R2 = 0.992, M. javanica R2 = 0.983). These automated counting protocols have the potential to provide significant time and resource savings annually for breeders and nematologists and may be broadly applicable to other nematode species 
650 4 |a Journal Article 
650 4 |a Comparative Study 
650 4 |a automated counting 
650 4 |a convolutional neural network 
650 4 |a meloidogyne 
650 4 |a root-knot nematode 
700 1 |a Watson, Mark  |e verfasserin  |4 aut 
700 1 |a Nguyen, Hoang  |e verfasserin  |4 aut 
700 1 |a Moore, Savannah  |e verfasserin  |4 aut 
700 1 |a Lewis, Ramsey S  |e verfasserin  |4 aut 
700 1 |a Kudenov, Michael  |e verfasserin  |4 aut 
700 1 |a Yencho, G Craig  |e verfasserin  |4 aut 
700 1 |a Gorny, Adrienne M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant disease  |d 1997  |g 108(2024), 9 vom: 23. Sept., Seite 2625-2629  |w (DE-627)NLM098181742  |x 0191-2917  |7 nnns 
773 1 8 |g volume:108  |g year:2024  |g number:9  |g day:23  |g month:09  |g pages:2625-2629 
856 4 0 |u http://dx.doi.org/10.1094/PDIS-01-24-0217-SR  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 108  |j 2024  |e 9  |b 23  |c 09  |h 2625-2629