Weak Augmentation Guided Relational Self-Supervised Learning

Self-supervised Learning (SSL) including the mainstream contrastive learning has achieved great success in learning visual representations without data annotations. However, most methods mainly focus on the instance level information (i.e., the different augmented images of the same instance should...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 29. Nov., Seite 8502-8516
1. Verfasser: Zheng, Mingkai (VerfasserIn)
Weitere Verfasser: You, Shan, Wang, Fei, Qian, Chen, Zhang, Changshui, Wang, Xiaogang, Xu, Chang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM372980058
003 DE-627
005 20241108232208.0
007 cr uuu---uuuuu
008 240530s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3406907  |2 doi 
028 5 2 |a pubmed24n1594.xml 
035 |a (DE-627)NLM372980058 
035 |a (NLM)38809743 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zheng, Mingkai  |e verfasserin  |4 aut 
245 1 0 |a Weak Augmentation Guided Relational Self-Supervised Learning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Self-supervised Learning (SSL) including the mainstream contrastive learning has achieved great success in learning visual representations without data annotations. However, most methods mainly focus on the instance level information (i.e., the different augmented images of the same instance should have the same feature or cluster into the same class), but there is a lack of attention on the relationships between different instances. In this paper, we introduce a novel SSL paradigm, which we term as relational self-supervised learning (ReSSL) framework that learns representations by modeling the relationship between different instances. Specifically, our proposed method employs sharpened distribution of pairwise similarities among different instances as relation metric, which is thus utilized to match the feature embeddings of different augmentations. To boost the performance, we argue that weak augmentations matter to represent a more reliable relation, and leverage momentum strategy for practical efficiency. The designed asymmetric predictor head and an InfoNCE warm-up strategy enhance the robustness to hyper-parameters and benefit the resulting performance. Experimental results show that our proposed ReSSL substantially outperforms the state-of-the-art methods across different network architectures, including various lightweight networks (e.g., EfficientNet and MobileNet) 
650 4 |a Journal Article 
700 1 |a You, Shan  |e verfasserin  |4 aut 
700 1 |a Wang, Fei  |e verfasserin  |4 aut 
700 1 |a Qian, Chen  |e verfasserin  |4 aut 
700 1 |a Zhang, Changshui  |e verfasserin  |4 aut 
700 1 |a Wang, Xiaogang  |e verfasserin  |4 aut 
700 1 |a Xu, Chang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 29. Nov., Seite 8502-8516  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:29  |g month:11  |g pages:8502-8516 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3406907  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 29  |c 11  |h 8502-8516