Flare7K++ : Mixing Synthetic and Real Datasets for Nighttime Flare Removal and Beyond

Artificial lights commonly leave strong lens flare artifacts on the images captured at night, degrading both the visual quality and performance of vision algorithms. Existing flare removal approaches mainly focus on removing daytime flares and fail in nighttime cases. Nighttime flare removal is chal...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 11 vom: 29. Okt., Seite 7041-7055
1. Verfasser: Dai, Yuekun (VerfasserIn)
Weitere Verfasser: Li, Chongyi, Zhou, Shangchen, Feng, Ruicheng, Luo, Yihang, Loy, Chen Change
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM372980023
003 DE-627
005 20241004232117.0
007 cr uuu---uuuuu
008 240530s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3406821  |2 doi 
028 5 2 |a pubmed24n1557.xml 
035 |a (DE-627)NLM372980023 
035 |a (NLM)38809745 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dai, Yuekun  |e verfasserin  |4 aut 
245 1 0 |a Flare7K++  |b Mixing Synthetic and Real Datasets for Nighttime Flare Removal and Beyond 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Artificial lights commonly leave strong lens flare artifacts on the images captured at night, degrading both the visual quality and performance of vision algorithms. Existing flare removal approaches mainly focus on removing daytime flares and fail in nighttime cases. Nighttime flare removal is challenging due to the unique luminance and spectrum of artificial lights, as well as the diverse patterns and image degradation of the flares. The scarcity of the nighttime flare removal dataset constrains the research on this crucial task. In this paper, we introduce Flare7K++, the first comprehensive nighttime flare removal dataset, consisting of 962 real-captured flare images (Flare-R) and 7000 synthetic flares (Flare7K). Compared to Flare7K, Flare7K++ is particularly effective in eliminating complicated degradation around the light source, which is intractable by using synthetic flares alone. Besides, the previous flare removal pipeline relies on the manual threshold and blur kernel settings to extract light sources, which may fail when the light sources are tiny or not overexposed. To address this issue, we additionally provide the annotations of light sources in Flare7K++ and propose a new end-to-end pipeline to preserve the light source while removing lens flares. Our dataset and pipeline offer a valuable foundation and benchmark for future investigations into nighttime flare removal studies. Extensive experiments demonstrate that Flare7K++ supplements the diversity of existing flare datasets and pushes the frontier of nighttime flare removal toward real-world scenarios 
650 4 |a Journal Article 
700 1 |a Li, Chongyi  |e verfasserin  |4 aut 
700 1 |a Zhou, Shangchen  |e verfasserin  |4 aut 
700 1 |a Feng, Ruicheng  |e verfasserin  |4 aut 
700 1 |a Luo, Yihang  |e verfasserin  |4 aut 
700 1 |a Loy, Chen Change  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 11 vom: 29. Okt., Seite 7041-7055  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:11  |g day:29  |g month:10  |g pages:7041-7055 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3406821  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 11  |b 29  |c 10  |h 7041-7055