Shared Latent Membership Enables Joint Shape Abstraction and Segmentation With Deformable Superquadrics

Part-level 3D shape representations are crucial to shape reasoning and understanding. Two key sub-tasks are: 1) shape abstraction, creating primitive-based object parts; and 2) shape segmentation, finding partition-based object parts. However, for 3D object point clouds, most advanced methods produc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 29., Seite 3564-3577
1. Verfasser: Li, Jiaxin (VerfasserIn)
Weitere Verfasser: Wang, Hongxing, Tan, Jiawei, Yuan, Junsong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM372979866
003 DE-627
005 20240605232923.0
007 cr uuu---uuuuu
008 240530s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3404234  |2 doi 
028 5 2 |a pubmed24n1429.xml 
035 |a (DE-627)NLM372979866 
035 |a (NLM)38809728 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Jiaxin  |e verfasserin  |4 aut 
245 1 0 |a Shared Latent Membership Enables Joint Shape Abstraction and Segmentation With Deformable Superquadrics 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Part-level 3D shape representations are crucial to shape reasoning and understanding. Two key sub-tasks are: 1) shape abstraction, creating primitive-based object parts; and 2) shape segmentation, finding partition-based object parts. However, for 3D object point clouds, most advanced methods produce parts relying on task-specific priors, such as similarity metrics and primitive geometries, resulting in misleading parts that deviate from semantics. To address prior limitations, we establish a foundation for joint shape abstraction and shape segmentation as formal linear transformations within a shared latent space, encapsulating essential dual-purpose membership information linking points and object parts for mutual reinforcement. We demonstrate that the transformations are underpinned by a derivation based on k-means, Non-negative Matrix Factorization (NMF), and the attention mechanism. As a result, we introduce Latent Membership Pursuit (LMP) for joint optimization of shape abstraction and segmentation. LMP utilizes a shared latent representation of object part membership to autonomously identify common object parts in both tasks without any supervision and priors. Furthermore, we adapt deformable superquadrics (DSQs) for primitives to capture variable part-level geometric and semantic information. Experiments on benchmark datasets validate that our approach enables mutual learning of shape abstraction and segmentation, and promotes consistent interpretations of 3D object shapes across instances and even categories in a fully unsupervised manner 
650 4 |a Journal Article 
700 1 |a Wang, Hongxing  |e verfasserin  |4 aut 
700 1 |a Tan, Jiawei  |e verfasserin  |4 aut 
700 1 |a Yuan, Junsong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 29., Seite 3564-3577  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:29  |g pages:3564-3577 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3404234  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 29  |h 3564-3577