KMTLabeler : An Interactive Knowledge-Assisted Labeling Tool for Medical Text Classification

The process of labeling medical text plays a crucial role in medical research. Nonetheless, creating accurately labeled medical texts of high quality is often a time-consuming task that requires specialized domain knowledge. Traditional methods for generating labeled data typically rely on rigid rul...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 28. Mai
1. Verfasser: Wang, He (VerfasserIn)
Weitere Verfasser: Ouyang, Yang, Wu, Yuchen, Jiang, Chang, Jin, Lixia, Cao, Yuanwu, Li, Quan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM372936105
003 DE-627
005 20250306061531.0
007 cr uuu---uuuuu
008 240529s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3406387  |2 doi 
028 5 2 |a pubmed25n1242.xml 
035 |a (DE-627)NLM372936105 
035 |a (NLM)38805325 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, He  |e verfasserin  |4 aut 
245 1 0 |a KMTLabeler  |b An Interactive Knowledge-Assisted Labeling Tool for Medical Text Classification 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The process of labeling medical text plays a crucial role in medical research. Nonetheless, creating accurately labeled medical texts of high quality is often a time-consuming task that requires specialized domain knowledge. Traditional methods for generating labeled data typically rely on rigid rule-based approaches, which may not adapt well to new tasks. While recent machine learning (ML) methodologies have mitigated the manual labeling efforts, configuring models to align with specific research requirements can be challenging for labelers without technical expertise. Moreover, automated labeling techniques, such as transfer learning, face difficulties in in directly incorporating expert input, whereas semi-automated methods, like data programming, allow knowledge integration through rules or knowledge bases but may lack continuous result refinement throughout the entire labeling process. In this study, we present a collaborative human-ML teaming workflow that seamlessly integrates visual cluster analysis and active learning to assist domain experts in labeling medical text with high efficiency. Additionally, we introduce an innovative neural network model called the embedding network, which incorporates expert insights to generate task-specific embeddings for medical texts. We integrate the workflow and embedding network into a visual analytics tool named KMTLabeler, equipped with coordinated multi-level views and interactions. Two illustrative case studies, along with a controlled user study, provide substantial evidence of the effectiveness of KMTLabeler in creating an efficient labeling environment for medical text classification 
650 4 |a Journal Article 
700 1 |a Ouyang, Yang  |e verfasserin  |4 aut 
700 1 |a Wu, Yuchen  |e verfasserin  |4 aut 
700 1 |a Jiang, Chang  |e verfasserin  |4 aut 
700 1 |a Jin, Lixia  |e verfasserin  |4 aut 
700 1 |a Cao, Yuanwu  |e verfasserin  |4 aut 
700 1 |a Li, Quan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 28. Mai  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:PP  |g year:2024  |g day:28  |g month:05 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3406387  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 28  |c 05