|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM372893953 |
003 |
DE-627 |
005 |
20250306061025.0 |
007 |
cr uuu---uuuuu |
008 |
240527s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202402871
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1242.xml
|
035 |
|
|
|a (DE-627)NLM372893953
|
035 |
|
|
|a (NLM)38801111
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Xu, Hui
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Citric Acid
|b A Nexus Between Cellular Mechanisms and Biomaterial Innovations
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 08.08.2024
|
500 |
|
|
|a Date Revised 10.08.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
|
520 |
|
|
|a Citrate-based biodegradable polymers have emerged as a distinctive biomaterial platform with tremendous potential for diverse medical applications. By harnessing their versatile chemistry, these polymers exhibit a wide range of material and bioactive properties, enabling them to regulate cell metabolism and stem cell differentiation through energy metabolism, metabonegenesis, angiogenesis, and immunomodulation. Moreover, the recent US Food and Drug Administration (FDA) clearance of the biodegradable poly(octamethylene citrate) (POC)/hydroxyapatite-based orthopedic fixation devices represents a translational research milestone for biomaterial science. POC joins a short list of biodegradable synthetic polymers that have ever been authorized by the FDA for use in humans. The clinical success of POC has sparked enthusiasm and accelerated the development of next-generation citrate-based biomaterials. This review presents a comprehensive, forward-thinking discussion on the pivotal role of citrate chemistry and metabolism in various tissue regeneration and on the development of functional citrate-based metabotissugenic biomaterials for regenerative engineering applications
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a Citric acid
|
650 |
|
4 |
|a biodegradable polymers
|
650 |
|
4 |
|a biomaterials
|
650 |
|
4 |
|a metabotissugenesis
|
650 |
|
4 |
|a regenerative engineering
|
650 |
|
7 |
|a Citric Acid
|2 NLM
|
650 |
|
7 |
|a 2968PHW8QP
|2 NLM
|
650 |
|
7 |
|a Biocompatible Materials
|2 NLM
|
650 |
|
7 |
|a Polymers
|2 NLM
|
650 |
|
7 |
|a Durapatite
|2 NLM
|
650 |
|
7 |
|a 91D9GV0Z28
|2 NLM
|
700 |
1 |
|
|a Yan, Su
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gerhard, Ethan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xie, Denghui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Xiaodong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Bing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shi, Dongquan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ameer, Guillermo A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Jian
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 32 vom: 23. Aug., Seite e2402871
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:32
|g day:23
|g month:08
|g pages:e2402871
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202402871
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 32
|b 23
|c 08
|h e2402871
|