Theoretical study of structure sensitivity on ceria-supported single platinum atoms and its influence on carbon monoxide adsorption
© 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.
Veröffentlicht in: | Journal of computational chemistry. - 1984. - 45(2024), 25 vom: 30. Sept., Seite 2167-2179 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Journal of computational chemistry |
Schlagworte: | Journal Article carbon monoxide ceria density functional theory platinum single‐atom catalysis structure sensitivity water–gas shift reaction |
Zusammenfassung: | © 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. Density functional theory (DFT) calculations explore the stability of a single platinum atom on various flat, stepped, and defective ceria surfaces, in the context of single-atom catalysts (SACs) for the water-gas shift (WGS) reaction. The adsorption properties and diffusion kinetics of the metal strongly depend on the support termination with large stability on metastable and stepped CeO2(100) and (210) surfaces where the diffusion of the platinum atom is hindered. At the opposite, the more stable CeO2(111) and (110) terminations weakly bind the platinum atom and can promote the growth of metallic clusters thanks to fast diffusion kinetics. The adsorption of carbon monoxide on the single platinum atom supported on the various ceria terminations is also sensitive to the surface structure. Carbon monoxide weakly binds to the single platinum atom supported on reduced CeO2(111) and (211) terminations. The desorption of the CO2 formed during the WGS reaction is thus facilitated on the latter terminations. A vibrational analysis underlines the significant changes in the calculated scaled anharmonic CO stretching frequency on these catalysts |
---|---|
Beschreibung: | Date Revised 05.08.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1096-987X |
DOI: | 10.1002/jcc.27393 |