|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM372831842 |
003 |
DE-627 |
005 |
20240726232411.0 |
007 |
cr uuu---uuuuu |
008 |
240525s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202402369
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1482.xml
|
035 |
|
|
|a (DE-627)NLM372831842
|
035 |
|
|
|a (NLM)38794859
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Aldossary, Abdulrahman
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a In Silico Chemical Experiments in the Age of AI
|b From Quantum Chemistry to Machine Learning and Back
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 25.07.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Computational chemistry is an indispensable tool for understanding molecules and predicting chemical properties. However, traditional computational methods face significant challenges due to the difficulty of solving the Schrödinger equations and the increasing computational cost with the size of the molecular system. In response, there has been a surge of interest in leveraging artificial intelligence (AI) and machine learning (ML) techniques to in silico experiments. Integrating AI and ML into computational chemistry increases the scalability and speed of the exploration of chemical space. However, challenges remain, particularly regarding the reproducibility and transferability of ML models. This review highlights the evolution of ML in learning from, complementing, or replacing traditional computational chemistry for energy and property predictions. Starting from models trained entirely on numerical data, a journey set forth toward the ideal model incorporating or learning the physical laws of quantum mechanics. This paper also reviews existing computational methods and ML models and their intertwining, outlines a roadmap for future research, and identifies areas for improvement and innovation. Ultimately, the goal is to develop AI architectures capable of predicting accurate and transferable solutions to the Schrödinger equation, thereby revolutionizing in silico experiments within chemistry and materials science
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a computational chemistry
|
650 |
|
4 |
|a in silico experiments
|
650 |
|
4 |
|a machine learning
|
700 |
1 |
|
|a Campos-Gonzalez-Angulo, Jorge Arturo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pablo-García, Sergio
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Leong, Shi Xuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rajaonson, Ella Miray
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Thiede, Luca
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tom, Gary
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Andrew
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Avagliano, Davide
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Aspuru-Guzik, Alán
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 30 vom: 25. Juli, Seite e2402369
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:30
|g day:25
|g month:07
|g pages:e2402369
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202402369
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 30
|b 25
|c 07
|h e2402369
|