In Silico Chemical Experiments in the Age of AI : From Quantum Chemistry to Machine Learning and Back

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 30 vom: 25. Juli, Seite e2402369
1. Verfasser: Aldossary, Abdulrahman (VerfasserIn)
Weitere Verfasser: Campos-Gonzalez-Angulo, Jorge Arturo, Pablo-García, Sergio, Leong, Shi Xuan, Rajaonson, Ella Miray, Thiede, Luca, Tom, Gary, Wang, Andrew, Avagliano, Davide, Aspuru-Guzik, Alán
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review computational chemistry in silico experiments machine learning
LEADER 01000caa a22002652 4500
001 NLM372831842
003 DE-627
005 20240726232411.0
007 cr uuu---uuuuu
008 240525s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202402369  |2 doi 
028 5 2 |a pubmed24n1482.xml 
035 |a (DE-627)NLM372831842 
035 |a (NLM)38794859 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Aldossary, Abdulrahman  |e verfasserin  |4 aut 
245 1 0 |a In Silico Chemical Experiments in the Age of AI  |b From Quantum Chemistry to Machine Learning and Back 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Computational chemistry is an indispensable tool for understanding molecules and predicting chemical properties. However, traditional computational methods face significant challenges due to the difficulty of solving the Schrödinger equations and the increasing computational cost with the size of the molecular system. In response, there has been a surge of interest in leveraging artificial intelligence (AI) and machine learning (ML) techniques to in silico experiments. Integrating AI and ML into computational chemistry increases the scalability and speed of the exploration of chemical space. However, challenges remain, particularly regarding the reproducibility and transferability of ML models. This review highlights the evolution of ML in learning from, complementing, or replacing traditional computational chemistry for energy and property predictions. Starting from models trained entirely on numerical data, a journey set forth toward the ideal model incorporating or learning the physical laws of quantum mechanics. This paper also reviews existing computational methods and ML models and their intertwining, outlines a roadmap for future research, and identifies areas for improvement and innovation. Ultimately, the goal is to develop AI architectures capable of predicting accurate and transferable solutions to the Schrödinger equation, thereby revolutionizing in silico experiments within chemistry and materials science 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a computational chemistry 
650 4 |a in silico experiments 
650 4 |a machine learning 
700 1 |a Campos-Gonzalez-Angulo, Jorge Arturo  |e verfasserin  |4 aut 
700 1 |a Pablo-García, Sergio  |e verfasserin  |4 aut 
700 1 |a Leong, Shi Xuan  |e verfasserin  |4 aut 
700 1 |a Rajaonson, Ella Miray  |e verfasserin  |4 aut 
700 1 |a Thiede, Luca  |e verfasserin  |4 aut 
700 1 |a Tom, Gary  |e verfasserin  |4 aut 
700 1 |a Wang, Andrew  |e verfasserin  |4 aut 
700 1 |a Avagliano, Davide  |e verfasserin  |4 aut 
700 1 |a Aspuru-Guzik, Alán  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 30 vom: 25. Juli, Seite e2402369  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:30  |g day:25  |g month:07  |g pages:e2402369 
856 4 0 |u http://dx.doi.org/10.1002/adma.202402369  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 30  |b 25  |c 07  |h e2402369