Computational Investigation of a Reversible Energy Storage Medium in g-B5N3 Decorated by Lithium

Graphene-like materials in two dimensions hold great promise for energy storage and transformation applications owing to their distinctive features, such as lightweight composition, porous geometry, etc. Among these materials, a recently discovered unit known as g-B5N3 has demonstrated high performa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 40(2024), 22 vom: 04. Juni, Seite 11582-11589
1. Verfasser: Chen, Xihao (VerfasserIn)
Weitere Verfasser: Zhang, Liang, Jia, Huaijie, Gao, Peng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM37273409X
003 DE-627
005 20250306055304.0
007 cr uuu---uuuuu
008 240524s2024 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.4c00779  |2 doi 
028 5 2 |a pubmed25n1241.xml 
035 |a (DE-627)NLM37273409X 
035 |a (NLM)38785077 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Xihao  |e verfasserin  |4 aut 
245 1 0 |a Computational Investigation of a Reversible Energy Storage Medium in g-B5N3 Decorated by Lithium 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Graphene-like materials in two dimensions hold great promise for energy storage and transformation applications owing to their distinctive features, such as lightweight composition, porous geometry, etc. Among these materials, a recently discovered unit known as g-B5N3 has demonstrated high performance in energy storage and transformation. In our efforts to enhance its applicability in adsorbing energy gases, we propose a novel composite structure by decorating Li atoms on the surface of pristine g-B5N3. The electronic properties of this composite have been comprehensively investigated using a first-principles method. Our findings reveal that the added Li atoms can be securely anchored on the g-B5N3 with an adsorption energy of -3.01 eV. Furthermore, the Li atom transfers its partial 2s electrons to the g-B5N3, exhibiting considerable electropositivity. These metallic sites effectively polarize the adsorbed H2 molecules, enhancing the mutual electrostatic interactions. Each primitive cell of Li-doped g-B5N3 can adsorb up to 13 H2 molecules, resulting in a storage capacity up to 6.3 wt %. This capacity significantly surpasses the goal of 4.5 wt % set by the U.S. Department of Energy. Furthermore, the typical adsorption energy of -0.209 eV per molecule of H2 aligns with the energy range suitable for reversible hydrogen storage. This study underscores the potential of Li-doped g-B5N3 for energy gas adsorption, shedding light on further advancements in this field 
650 4 |a Journal Article 
700 1 |a Zhang, Liang  |e verfasserin  |4 aut 
700 1 |a Jia, Huaijie  |e verfasserin  |4 aut 
700 1 |a Gao, Peng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1985  |g 40(2024), 22 vom: 04. Juni, Seite 11582-11589  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnas 
773 1 8 |g volume:40  |g year:2024  |g number:22  |g day:04  |g month:06  |g pages:11582-11589 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.4c00779  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 40  |j 2024  |e 22  |b 04  |c 06  |h 11582-11589