Fast Photoactuation and Environmental Response of Humidity-Sensitive pDAP-Silicon Nanocantilevers
© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 31 vom: 01. Aug., Seite e2403114 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Brillouin light scattering energy harvesting nanomembranes photoactuation plasma polymerization polyamides water sorption |
Zusammenfassung: | © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. Multi-responsive nanomembranes are a new class of advanced materials that can be harnessed in complex architectures for micro and nano-manipulators, artificial muscles, energy harvesting, soft robotics, and sensors. The design and fabrication of responsive membranes must meet such challenges as trade-offs between responsiveness and mechanical durability, volumetric low-cost production ensuring low environmental impact, and compatibility with standard technologies or biological systems This work demonstrates the fabrication of multi-responsive, mechanically robust poly(1,3-diaminopropane) (pDAP) nanomembranes and their application in fast photoactuators. The pDAP films are developed using a plasma-assisted polymerization technique that offers large-scale production and versatility of potential industrial relevance. The pDAP layers exhibit high elasticity with the Young's modulus of ≈7 GPa and remarkable mechanical durability across 20-80 °C temperatures. Notably, pDAP membranes reveal immediate and reversible contraction triggered by light, rising temperature, or reducing relative humidity underpinned by a reversible water sorption mechanism. These features enable the fabrication of photoactuators composed of pDAP-coated Si nanocantilevers, demonstrating ms timescale response to light, tens of µm deflections, and robust performance up to kHz frequencies. These results advance fundamental research on multi-responsive nanomembranes and hold the potential to boost versatile applications in light-to-motion conversion and sensing toward the industrial level |
---|---|
Beschreibung: | Date Revised 01.08.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202403114 |