IGCN : A Provably Informative GCN Embedding for Semi-Supervised Learning With Extremely Limited Labels

Graph Neural Networks (GNNs) have gained much more attention in the representation learning for the graph-structured data. However, the labels are always limited in the graph, which easily leads to the overfitting problem and causes the poor performance. To solve this problem, we propose a new frame...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 23. Dez., Seite 8396-8409
1. Verfasser: Zhang, Lin (VerfasserIn)
Weitere Verfasser: Song, Ran, Tan, Wenhao, Ma, Lin, Zhang, Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article