IGCN : A Provably Informative GCN Embedding for Semi-Supervised Learning With Extremely Limited Labels
Graph Neural Networks (GNNs) have gained much more attention in the representation learning for the graph-structured data. However, the labels are always limited in the graph, which easily leads to the overfitting problem and causes the poor performance. To solve this problem, we propose a new frame...
Description complète
Détails bibliographiques
| Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 23. Dez., Seite 8396-8409
|
| Auteur principal: |
Zhang, Lin
(Auteur) |
| Autres auteurs: |
Song, Ran,
Tan, Wenhao,
Ma, Lin,
Zhang, Wei |
| Format: | Article en ligne
|
| Langue: | English |
| Publié: |
2024
|
| Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence
|
| Sujets: | Journal Article |