IGCN : A Provably Informative GCN Embedding for Semi-Supervised Learning With Extremely Limited Labels
Graph Neural Networks (GNNs) have gained much more attention in the representation learning for the graph-structured data. However, the labels are always limited in the graph, which easily leads to the overfitting problem and causes the poor performance. To solve this problem, we propose a new frame...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 23. Dez., Seite 8396-8409
|
1. Verfasser: |
Zhang, Lin
(VerfasserIn) |
Weitere Verfasser: |
Song, Ran,
Tan, Wenhao,
Ma, Lin,
Zhang, Wei |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence
|
Schlagworte: | Journal Article |