Comparing environmental impacts of deep-seabed and land-based mining : A defensible framework

© 2024 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 30(2024), 5 vom: 23. Mai, Seite e17334
1. Verfasser: Metaxas, A (VerfasserIn)
Weitere Verfasser: Anglin, C D, Cross, A, Drazen, J, Haeckel, M, Mudd, G, Smith, C R, Smith, S, Weaver, P P E, Sonter, L, Amon, D J, Erskine, P D, Levin, L A, Lily, H, Maest, A S, Mestre, N C, Ramirez-Llodra, E, Sánchez, L E, Sharma, R, Vanreusel, A, Wheston, S, Tunnicliffe, V
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Comparative Study SMART indicators biodiversity loss deep‐seabed versus land‐based mining ecological and environmental thresholds ecosystem attributes environmental impact wheel
LEADER 01000naa a22002652 4500
001 NLM372687989
003 DE-627
005 20240523233620.0
007 cr uuu---uuuuu
008 240523s2024 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.17334  |2 doi 
028 5 2 |a pubmed24n1416.xml 
035 |a (DE-627)NLM372687989 
035 |a (NLM)38780465 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Metaxas, A  |e verfasserin  |4 aut 
245 1 0 |a Comparing environmental impacts of deep-seabed and land-based mining  |b A defensible framework 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.05.2024 
500 |a Date Revised 23.05.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2024 John Wiley & Sons Ltd. 
520 |a The crises of climate change and biodiversity loss are interlinked and must be addressed jointly. A proposed solution for reducing reliance on fossil fuels, and thus mitigating climate change, is the transition from conventional combustion-engine to electric vehicles. This transition currently requires additional mineral resources, such as nickel and cobalt used in car batteries, presently obtained from land-based mines. Most options to meet this demand are associated with some biodiversity loss. One proposal is to mine the deep seabed, a vast, relatively pristine and mostly unexplored region of our planet. Few comparisons of environmental impacts of solely expanding land-based mining versus extending mining to the deep seabed for the additional resources exist and for biodiversity only qualitative. Here, we present a framework that facilitates a holistic comparison of relative ecosystem impacts by mining, using empirical data from relevant environmental metrics. This framework (Environmental Impact Wheel) includes a suite of physicochemical and biological components, rather than a few selected metrics, surrogates, or proxies. It is modified from the "recovery wheel" presented in the International Standards for the Practice of Ecological Restoration to address impacts rather than recovery. The wheel includes six attributes (physical condition, community composition, structural diversity, ecosystem function, external exchanges and absence of threats). Each has 3-5 sub attributes, in turn measured with several indicators. The framework includes five steps: (1) identifying geographic scope; (2) identifying relevant spatiotemporal scales; (3) selecting relevant indicators for each sub-attribute; (4) aggregating changes in indicators to scores; and (5) generating Environmental Impact Wheels for targeted comparisons. To move forward comparisons of land-based with deep seabed mining, thresholds of the indicators that reflect the range in severity of environmental impacts are needed. Indicators should be based on clearly articulated environmental goals, with objectives and targets that are specific, measurable, achievable, relevant, and time bound 
650 4 |a Journal Article 
650 4 |a Comparative Study 
650 4 |a SMART indicators 
650 4 |a biodiversity loss 
650 4 |a deep‐seabed versus land‐based mining 
650 4 |a ecological and environmental thresholds 
650 4 |a ecosystem attributes 
650 4 |a environmental impact wheel 
700 1 |a Anglin, C D  |e verfasserin  |4 aut 
700 1 |a Cross, A  |e verfasserin  |4 aut 
700 1 |a Drazen, J  |e verfasserin  |4 aut 
700 1 |a Haeckel, M  |e verfasserin  |4 aut 
700 1 |a Mudd, G  |e verfasserin  |4 aut 
700 1 |a Smith, C R  |e verfasserin  |4 aut 
700 1 |a Smith, S  |e verfasserin  |4 aut 
700 1 |a Weaver, P P E  |e verfasserin  |4 aut 
700 1 |a Sonter, L  |e verfasserin  |4 aut 
700 1 |a Amon, D J  |e verfasserin  |4 aut 
700 1 |a Erskine, P D  |e verfasserin  |4 aut 
700 1 |a Levin, L A  |e verfasserin  |4 aut 
700 1 |a Lily, H  |e verfasserin  |4 aut 
700 1 |a Maest, A S  |e verfasserin  |4 aut 
700 1 |a Mestre, N C  |e verfasserin  |4 aut 
700 1 |a Ramirez-Llodra, E  |e verfasserin  |4 aut 
700 1 |a Sánchez, L E  |e verfasserin  |4 aut 
700 1 |a Sharma, R  |e verfasserin  |4 aut 
700 1 |a Vanreusel, A  |e verfasserin  |4 aut 
700 1 |a Wheston, S  |e verfasserin  |4 aut 
700 1 |a Tunnicliffe, V  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 30(2024), 5 vom: 23. Mai, Seite e17334  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:5  |g day:23  |g month:05  |g pages:e17334 
856 4 0 |u http://dx.doi.org/10.1111/gcb.17334  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 5  |b 23  |c 05  |h e17334