|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM372685811 |
003 |
DE-627 |
005 |
20240604232834.0 |
007 |
cr uuu---uuuuu |
008 |
240523s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.4c00316
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1428.xml
|
035 |
|
|
|a (DE-627)NLM372685811
|
035 |
|
|
|a (NLM)38780242
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ye, Shuyan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Oxidative MnO2 Template Assisted Electrochemical Fabrication of Graphene/Polypyrrole Supercapacitor Electrodes
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 04.06.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Improving the morphological structure of active materials is a reliable strategy for the fabrication of high-performance supercapacitor electrodes. In this study, we introduce a feasible approach to constructing the graphene/polypyrrole (PPy) composite film implanted onto the current collector through a two-step electrochemical deposition method utilizing MnO2 as an intermediary template. The reduced graphene oxide (rGO) hydrogel film is first hydrothermally grown on a carbon cloth (CC) substrate to obtain a porous rGOCC electrode on which MnO2 is electrodeposited. Then the as-prepared rGO/MnO2@CC electrode is subjected to the electrochemical polymerization of pyrrole, with MnO2 acting as an oxidizing template to facilitate the oxidative polymerization of pyrrole, ultimately yielding an rGO/PPy composite film on CC. The PPy synthesized via this methodology exhibits a distinctive interconnected structure, resulting in superior electrochemical performance compared with the electrode with PPy directly electrodeposited on rGO@CC. The optimized electrode achieves an impressive specific capacitance of 583.6 F g-1 at 1 A g-1 and retains 83% of its capacitance at 20 A g-1, with a capacitance loss of only 9.5% after 5000 charge-discharge cycles. The corresponding all-solid-state supercapacitor could provide a high energy density of 22.5 Wh kg-1 and a power density of 4.6 kW kg-1, with a capacitance retention of 82.7% after 5000 charge-discharge cycles. Furthermore, the device also demonstrates good flexibility performance upon bending at 90 and 180°. This work presents an innovative method for the preparation of carbon material/conducting polymer electrodes with specific structural characteristics and superior performance
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Xu, Aizhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Weifeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Zhiyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Shaoqing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qin, Yujun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 40(2024), 22 vom: 04. Juni, Seite 11460-11469
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:40
|g year:2024
|g number:22
|g day:04
|g month:06
|g pages:11460-11469
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.4c00316
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 40
|j 2024
|e 22
|b 04
|c 06
|h 11460-11469
|