Highly-Solvating Electrolyte Enables Mechanically Stable and Inorganic-Rich Cathode Electrolyte Interphase for High-Performing Potassium-Ion Batteries
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 32 vom: 01. Aug., Seite e2405184 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article cathode materials cathode–electrolyte interphase coordination environment interfacial stability potassium‐ion batteries |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. Cathode-electrolyte interphase (CEI) is crucial for the reversibility of rechargeable batteries, yet receives less attention compared to solid-electrolyte interphase (SEI). The prevalent weakly-solvating electrolyte is usually proposed from the standing point of obtaining robust SEI, however, the resultant weak ion-solvent interaction gives rise to excessive free solvents and forms thick CEI with high kinetic barriers, which is disadvantageous for interfacial stability at the high working voltage. Herein, a highly-solvating electrolyte is reported to immobilize free solvents by generating stable ternary complexes and facilitate the growth of homogeneous and ultrathin CEI to boost the electrochemical performances of potassium-ion batteries (PIBs). Through time-of-flight secondary ion mass spectrometry and cryogenic transmission electron microscopy, It is revealed that the deliberately coordinated complexes are the key to forming mechanically stable and inorganic-rich CEI with superior diffusion kinetics for high-performing PIBs. Coupling with a K0.5MnO2 cathode and a soft carbon (SC) anode, a high energy density (202.3 Wh kg-1) is achieved with an exceptional cycle lifespan (92.5% capacity retention after 500 cycles) in a SC||K0.5MnO2 full cell, setting new performance benchmarks for PIBs |
---|---|
Beschreibung: | Date Revised 08.08.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202405184 |