Robust Semi-Supervised Learning by Wisely Leveraging Open-Set Data
Open-set Semi-supervised Learning (OSSL) holds a realistic setting that unlabeled data may come from classes unseen in the labeled set, i.e., out-of-distribution (OOD) data, which could cause performance degradation in conventional SSL models. To handle this issue, except for the traditional in-dist...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 04. Nov., Seite 8334-8347 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Online verfügbar |
Volltext |