Robust Semi-Supervised Learning by Wisely Leveraging Open-Set Data

Open-set Semi-supervised Learning (OSSL) holds a realistic setting that unlabeled data may come from classes unseen in the labeled set, i.e., out-of-distribution (OOD) data, which could cause performance degradation in conventional SSL models. To handle this issue, except for the traditional in-dist...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 04. Nov., Seite 8334-8347
1. Verfasser: Yang, Yang (VerfasserIn)
Weitere Verfasser: Jiang, Nan, Xu, Yi, Zhan, De-Chuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article