Thermal Runaway Mechanism in Ni-Rich Cathode Full Cells of Lithium-Ion Batteries : The Role of Multidirectional Crosstalk

© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 31 vom: 06. Aug., Seite e2402024
1. Verfasser: Jo, Sugeun (VerfasserIn)
Weitere Verfasser: Seo, Sungjae, Kang, Song Kyu, Na, Ikcheon, Kunze, Sebastian, Song, Munsoo, San, Hwang, Woo, Sung Pil, Kim, SoHee, Kim, Won Bae, Lim, Jongwoo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Li‐ion battery high‐temperature X‐ray diffraction multidirectional crosstalk self‐amplifying loop thermal runaway
Beschreibung
Zusammenfassung:© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
Crosstalk, the exchange of chemical species between battery electrodes, significantly accelerates thermal runaway (TR) of lithium-ion batteries. To date, the understanding of their main mechanisms has centered on single-directional crosstalk of oxygen (O2) gas from the cathode to the anode, underestimating the exothermic reactions during TR. However, the role of multidirectional crosstalk in steering additional exothermic reactions is yet to be elucidated due to the difficulties of correlative in situ analyses of full cells. Herein, the way in which such crosstalk triggers self-amplifying feedback is elucidated that dramatically exacerbates TR within enclosed full cells, by employing synchrotron-based high-temperature X-ray diffraction, mass spectrometry, and calorimetry. These findings reveal that ethylene (C2H4) gas generated at the anode promotes O2 evolution at the cathode. This O2 then returns to the anode, further promoting additional C2H4 formation and creating a self-amplifying loop, thereby intensifying TR. Furthermore, CO2, traditionally viewed as an extinguishing gas, engages in the crosstalk by interacting with lithium at the anode to form Li2CO3, thereby accelerating TR beyond prior expectations. These insights have led to develop an anode coating that impedes the formation of C2H4 and O2, to effectively mitigate TR
Beschreibung:Date Revised 01.08.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202402024