Novel Palladium Hydride Surface Enabling Simultaneous Bacterial Killing and Osteogenic Formation through Proton Capturing and Activation of Antioxidant System in Immune Microenvironments

© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 31 vom: 01. Aug., Seite e2404485
1. Verfasser: Zhang, Dongdong (VerfasserIn)
Weitere Verfasser: Li, Mei, Chen, Shuhan, Du, Huihui, Zhong, Hua, Wu, Jun, Liu, Feihong, Zhang, Qian, Peng, Feng, Liu, Xuanyong, Yeung, Kelvin W K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Proton transfer bacterial killing enzyme‐like activity osteogenic immune microenvironment palladium hydride film Palladium 5TWQ1V240M Antioxidants Protons mehr... Anti-Bacterial Agents Reactive Oxygen Species Hydrogen 7YNJ3PO35Z
Beschreibung
Zusammenfassung:© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
Achieving bacterial killing and osteogenic formation on an implant surface rarely occurs. In this study, a novel surface design-a palladium hydride (PdHx) film that enables these two distinct features to coexist is introduced. The PdHx lattice captures protons in the extracellular microenvironment of bacteria, disrupting their normal metabolic activities, such as ATP synthesis, nutrient co-transport, and oxidative stress. This disruption leads to significant bacterial death, as evidenced by RNA sequence analysis. Additionally, the unique enzymatic activity and hydrogen-loading properties of PdHx activate the human antioxidant system, resulting in the rapid clearance of reactive oxygen species. This process reshapes the osteogenic immune microenvironment, promoting accelerated osteogenesis. These findings reveal that the downregulation of the NOD-like receptor signaling pathway is critical for activating immune cells toward M2 phenotype polarization. This novel surface design provides new strategies for modifying implant coatings to simultaneously prevent bacterial infection, reduce inflammation, and enhance tissue regeneration, making it a noteworthy contribution to the field of advanced materials
Beschreibung:Date Completed 01.08.2024
Date Revised 01.08.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202404485