Intra-leaf modeling of Cannabis leaflet shape produces leaf models that predict genetic and developmental identities

© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 243(2024), 2 vom: 19. Juli, Seite 781-796
1. Verfasser: Balant, Manica (VerfasserIn)
Weitere Verfasser: Garnatje, Teresa, Vitales, Daniel, Hidalgo, Oriane, Chitwood, Daniel H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Cannabis development geometric morphometrics intra‐leaf modeling leaf morphology leaf shape
Beschreibung
Zusammenfassung:© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.
The iconic, palmately compound leaves of Cannabis have attracted significant attention in the past. However, investigations into the genetic basis of leaf shape or its connections to phytochemical composition have yielded inconclusive results. This is partly due to prominent changes in leaflet number within a single plant during development, which has so far prevented the proper use of common morphometric techniques. Here, we present a new method that overcomes the challenge of nonhomologous landmarks in palmate, pinnate, and lobed leaves, using Cannabis as an example. We model corresponding pseudo-landmarks for each leaflet as angle-radius coordinates and model them as a function of leaflet to create continuous polynomial models, bypassing the problems associated with variable number of leaflets between leaves. We analyze 341 leaves from 24 individuals from nine Cannabis accessions. Using 3591 pseudo-landmarks in modeled leaves, we accurately predict accession identity, leaflet number, and relative node number. Intra-leaf modeling offers a rapid, cost-effective means of identifying Cannabis accessions, making it a valuable tool for future taxonomic studies, cultivar recognition, and possibly chemical content analysis and sex identification, in addition to permitting the morphometric analysis of leaves in any species with variable numbers of leaflets or lobes
Beschreibung:Date Completed 20.06.2024
Date Revised 20.07.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.19817