Machine Teaching Allows for Rapid Development of Automated Systems for Retinal Lesion Detection From Small Image Datasets

Machine teaching, a machine learning subfield, may allow for rapid development of artificial intelligence systems able to automatically identify emerging ocular biomarkers from small imaging datasets. We sought to use machine teaching to automatically identify retinal ischemic perivascular lesions (...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ophthalmic surgery, lasers & imaging retina. - 2013. - 55(2024), 8 vom: 01. Aug., Seite 475-478
1. Verfasser: Drakopoulos, Michael (VerfasserIn)
Weitere Verfasser: Hooshmand, Donna, Machlab, Laura A, Bryar, Paul J, Hammond, Kristian J, Mirza, Rukhsana G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Ophthalmic surgery, lasers & imaging retina
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM372413862
003 DE-627
005 20240816232108.0
007 cr uuu---uuuuu
008 240516s2024 xx |||||o 00| ||eng c
024 7 |a 10.3928/23258160-20240410-01  |2 doi 
028 5 2 |a pubmed24n1503.xml 
035 |a (DE-627)NLM372413862 
035 |a (NLM)38752915 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Drakopoulos, Michael  |e verfasserin  |4 aut 
245 1 0 |a Machine Teaching Allows for Rapid Development of Automated Systems for Retinal Lesion Detection From Small Image Datasets 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.08.2024 
500 |a Date Revised 16.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Machine teaching, a machine learning subfield, may allow for rapid development of artificial intelligence systems able to automatically identify emerging ocular biomarkers from small imaging datasets. We sought to use machine teaching to automatically identify retinal ischemic perivascular lesions (RIPLs) and subretinal drusenoid deposits (SDDs), two emerging ocular biomarkers of cardiovascular disease. IRB approval was obtained. Four small datasets of SD-OCT B-scans were used to train and test two distinct automated systems, one identifying RIPLs and the other identifying SDDs. An open-source interactive machine-learning software program, RootPainter, was used to perform annotation and training simultaneously over a 6-hour period. For SDDs at the B-scan level, test-set accuracy = 92%, sensitivity = 100%, specificity = 88%, positive predictive value (PPV) = 82%, and negative predictive value (NPV) = 100%. For RIPLs at the B-scan level, test-set accuracy = 90%, sensitivity = 60%, specificity = 93%, PPV = 50%, and NPV = 95%. Machine teaching demonstrates promise within ophthalmic imaging to rapidly allow for automated identification of novel biomarkers from small image datasets. [Ophthalmic Surg Lasers Imaging Retina 2024;55:475-478.] 
650 4 |a Journal Article 
700 1 |a Hooshmand, Donna  |e verfasserin  |4 aut 
700 1 |a Machlab, Laura A  |e verfasserin  |4 aut 
700 1 |a Bryar, Paul J  |e verfasserin  |4 aut 
700 1 |a Hammond, Kristian J  |e verfasserin  |4 aut 
700 1 |a Mirza, Rukhsana G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ophthalmic surgery, lasers & imaging retina  |d 2013  |g 55(2024), 8 vom: 01. Aug., Seite 475-478  |w (DE-627)NLM224956647  |x 2325-8179  |7 nnns 
773 1 8 |g volume:55  |g year:2024  |g number:8  |g day:01  |g month:08  |g pages:475-478 
856 4 0 |u http://dx.doi.org/10.3928/23258160-20240410-01  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_40 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_91 
912 |a GBV_ILN_130 
912 |a GBV_ILN_135 
912 |a GBV_ILN_136 
912 |a GBV_ILN_151 
912 |a GBV_ILN_181 
912 |a GBV_ILN_203 
912 |a GBV_ILN_217 
912 |a GBV_ILN_235 
912 |a GBV_ILN_289 
912 |a GBV_ILN_294 
912 |a GBV_ILN_297 
912 |a GBV_ILN_350 
912 |a GBV_ILN_352 
912 |a GBV_ILN_674 
912 |a GBV_ILN_676 
912 |a GBV_ILN_688 
912 |a GBV_ILN_698 
912 |a GBV_ILN_721 
912 |a GBV_ILN_737 
912 |a GBV_ILN_791 
912 |a GBV_ILN_812 
951 |a AR 
952 |d 55  |j 2024  |e 8  |b 01  |c 08  |h 475-478