Planar Chlorination Engineering : A Strategy of Completely Breaking the Geometric Symmetry of Fe-N4 Site for Boosting Oxygen Electroreduction

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 31 vom: 01. Aug., Seite e2404692
1. Verfasser: Wei, Shengjie (VerfasserIn)
Weitere Verfasser: Yang, Rongyan, Wang, Ziyi, Zhang, Jijie, Bu, Xian-He
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Fe‐N4 site with broken geometric symmetry Zn‐air battery oxygen reduction reaction planar chlorination engineering
LEADER 01000caa a22002652 4500
001 NLM372413269
003 DE-627
005 20240801233058.0
007 cr uuu---uuuuu
008 240516s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202404692  |2 doi 
028 5 2 |a pubmed24n1488.xml 
035 |a (DE-627)NLM372413269 
035 |a (NLM)38752852 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wei, Shengjie  |e verfasserin  |4 aut 
245 1 0 |a Planar Chlorination Engineering  |b A Strategy of Completely Breaking the Geometric Symmetry of Fe-N4 Site for Boosting Oxygen Electroreduction 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Introducing asymmetric elements and breaking the geometric symmetry of traditional metal-N4 site for boosting oxygen reduction reaction (ORR) are meaningful and challenging. Herein, the planar chlorination engineering of Fe-N4 site is first proposed for remarkably improving the ORR activity. The Fe-N4/CNCl catalyst with broken symmetry exhibits a half-wave potential (E1/2) of 0.917 V versus RHE, 49 and 72 mV higher than those of traditional Fe-N4/CN and commercial 20 wt% Pt/C catalysts. The Fe-N4/CNCl catalyst also has excellent stability for 25 000 cycles and good methanol tolerance ability. For Zn-air battery test, the Fe-N4/CNCl catalyst has the maximum power density of 228 mW cm-2 and outstanding stability during 150 h charge-discharge test, as the promising substitute of Pt-based catalysts in energy storage and conversion devices. The density functional theory calculation demonstrates that the adjacent C─Cl bond effectively breaks the symmetry of Fe-N4 site, downward shifts the d-band center of Fe, facilitates the reduction and release of OH*, and remarkably lowers the energy barrier of rate-determining step. This work reveals the enormous potential of planar chlorination engineering for boosting the ORR activity of traditional metal-N4 site by thoroughly breaking their geometric symmetry 
650 4 |a Journal Article 
650 4 |a Fe‐N4 site with broken geometric symmetry 
650 4 |a Zn‐air battery 
650 4 |a oxygen reduction reaction 
650 4 |a planar chlorination engineering 
700 1 |a Yang, Rongyan  |e verfasserin  |4 aut 
700 1 |a Wang, Ziyi  |e verfasserin  |4 aut 
700 1 |a Zhang, Jijie  |e verfasserin  |4 aut 
700 1 |a Bu, Xian-He  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 31 vom: 01. Aug., Seite e2404692  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:31  |g day:01  |g month:08  |g pages:e2404692 
856 4 0 |u http://dx.doi.org/10.1002/adma.202404692  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 31  |b 01  |c 08  |h e2404692