|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM372413269 |
003 |
DE-627 |
005 |
20240801233058.0 |
007 |
cr uuu---uuuuu |
008 |
240516s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202404692
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1488.xml
|
035 |
|
|
|a (DE-627)NLM372413269
|
035 |
|
|
|a (NLM)38752852
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wei, Shengjie
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Planar Chlorination Engineering
|b A Strategy of Completely Breaking the Geometric Symmetry of Fe-N4 Site for Boosting Oxygen Electroreduction
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.08.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Introducing asymmetric elements and breaking the geometric symmetry of traditional metal-N4 site for boosting oxygen reduction reaction (ORR) are meaningful and challenging. Herein, the planar chlorination engineering of Fe-N4 site is first proposed for remarkably improving the ORR activity. The Fe-N4/CNCl catalyst with broken symmetry exhibits a half-wave potential (E1/2) of 0.917 V versus RHE, 49 and 72 mV higher than those of traditional Fe-N4/CN and commercial 20 wt% Pt/C catalysts. The Fe-N4/CNCl catalyst also has excellent stability for 25 000 cycles and good methanol tolerance ability. For Zn-air battery test, the Fe-N4/CNCl catalyst has the maximum power density of 228 mW cm-2 and outstanding stability during 150 h charge-discharge test, as the promising substitute of Pt-based catalysts in energy storage and conversion devices. The density functional theory calculation demonstrates that the adjacent C─Cl bond effectively breaks the symmetry of Fe-N4 site, downward shifts the d-band center of Fe, facilitates the reduction and release of OH*, and remarkably lowers the energy barrier of rate-determining step. This work reveals the enormous potential of planar chlorination engineering for boosting the ORR activity of traditional metal-N4 site by thoroughly breaking their geometric symmetry
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Fe‐N4 site with broken geometric symmetry
|
650 |
|
4 |
|a Zn‐air battery
|
650 |
|
4 |
|a oxygen reduction reaction
|
650 |
|
4 |
|a planar chlorination engineering
|
700 |
1 |
|
|a Yang, Rongyan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Ziyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Jijie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bu, Xian-He
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 31 vom: 01. Aug., Seite e2404692
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:31
|g day:01
|g month:08
|g pages:e2404692
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202404692
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 31
|b 01
|c 08
|h e2404692
|