Schottky Junction Enhanced Photosynthesis of Hydrogen Peroxide by Ultrathin Porous Carbon Nitride Supported Ni Nanoparticles

Artificial photosynthesis for high-value hydrogen peroxide (H2O2) through a two-electron reduction reaction is a green and sustainable strategy. However, the development of highly active H2O2 photocatalysts is impeded by severe carrier recombination, ineffective active sites, and low surface reactio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 40(2024), 21 vom: 28. Mai, Seite 11251-11262
1. Verfasser: Zhou, Xiyuan (VerfasserIn)
Weitere Verfasser: Wang, Kaiwen, Wang, Yang, Cao, Yongyong, Wang, Jiaxing, Hu, Hanwen, Yang, Guo, Hou, Jixiang, Ma, Peijie, Gao, Chunlang, Ban, Chaogang, Duan, Youyu, Wei, Zhen, Zhang, Xu, Wang, Cong, Zheng, Kun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Artificial photosynthesis for high-value hydrogen peroxide (H2O2) through a two-electron reduction reaction is a green and sustainable strategy. However, the development of highly active H2O2 photocatalysts is impeded by severe carrier recombination, ineffective active sites, and low surface reaction efficiency. We developed a dual optimization strategy to load dense Ni nanoparticles onto ultrathin porous graphitic carbon nitride (Ni-UPGCN). In the absence and presence of sacrificial agents, Ni-UPGCN achieved H2O2 production rates of 169 and 4116 μmol g-1 h-1 with AQY (apparent quantum efficiency) at 420 nm of 3.14% and 17.71%. Forming a Schottky junction, the surface-modified Ni nanoparticles broaden the light absorption boundary and facilitate charge separation, which act as active sites, promoting O2 adsorption and reducing the formation energy of *OOH (reaction intermediate). This results in a substantial improvement in both H2O2 generation activity and selectivity. The Schottky junction of dual modulation strategy provides novel insights into the advancement of highly effective photocatalytic agents for the photosynthesis of H2O2
Beschreibung:Date Revised 28.05.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.4c01014