Fluoro-Ethylene-Carbonate Plays a Double-Edged Role on the Stability of Si Anode-Based Rechargeable Batteries During Cycling and Calendar Aging

© 2024 Battelle Memorial Institute. Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 30 vom: 25. Juli, Seite e2402625
1. Verfasser: Quinn, Joseph (VerfasserIn)
Weitere Verfasser: Kim, Ju-Myung, Yi, Ran, Zhang, Ji-Guang, Xiao, Jie, Wang, Chongmin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Si anode battery calendar life cycle life
LEADER 01000caa a22002652 4500
001 NLM372355048
003 DE-627
005 20240726232345.0
007 cr uuu---uuuuu
008 240515s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202402625  |2 doi 
028 5 2 |a pubmed24n1482.xml 
035 |a (DE-627)NLM372355048 
035 |a (NLM)38746999 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Quinn, Joseph  |e verfasserin  |4 aut 
245 1 0 |a Fluoro-Ethylene-Carbonate Plays a Double-Edged Role on the Stability of Si Anode-Based Rechargeable Batteries During Cycling and Calendar Aging 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Battelle Memorial Institute. Advanced Materials published by Wiley‐VCH GmbH. 
520 |a The energy storage density of Li-ion batteries can be improved by replacing graphite anodes with high-capacity Si-based materials, though instabilities have limited their implementation. Performance degradation mechanisms that occur in Si anodes can be divided into cycling stability (capacity retention after repeated battery cycles) and calendar aging (shelf life). While cycling instabilities and improvement strategies have been researched intensively, there is little known about the underlying mechanisms that cause calendar aging. In this work, multiple electron microscope techniques are used to explore the mechanism that governs calendar aging from the sub-nanometer-to-electrode scale. Plasma focused ion beam tomography is used to create 3D reconstructions of calendar aged electrodes and revealed the growth of a LiF-rich layer at the interface between the copper current collector and the silicon material, which can lead to delamination and increased interfacial impendence. The LiF layer appeared to derive from the fluoro-ethylene-carbonate electrolyte additive, which is commonly used to improve cycling stability in Si-based systems. The results reveal that additives necessary to improve cycling stability can cause performance degradation over the long-term during calendar aging. The results show that high performing, stable systems require careful design to simultaneously mitigate both cycling and calendar aging instabilities 
650 4 |a Journal Article 
650 4 |a Si anode 
650 4 |a battery 
650 4 |a calendar life 
650 4 |a cycle life 
700 1 |a Kim, Ju-Myung  |e verfasserin  |4 aut 
700 1 |a Yi, Ran  |e verfasserin  |4 aut 
700 1 |a Zhang, Ji-Guang  |e verfasserin  |4 aut 
700 1 |a Xiao, Jie  |e verfasserin  |4 aut 
700 1 |a Wang, Chongmin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 30 vom: 25. Juli, Seite e2402625  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:30  |g day:25  |g month:07  |g pages:e2402625 
856 4 0 |u http://dx.doi.org/10.1002/adma.202402625  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 30  |b 25  |c 07  |h e2402625