Asymmetric Convolution : An Efficient and Generalized Method to Fuse Feature Maps in Multiple Vision Tasks

Fusing features from different sources is a critical aspect of many computer vision tasks. Existing approaches can be roughly categorized as parameter-free or learnable operations. However, parameter-free modules are limited in their ability to benefit from offline learning, leading to poor performa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 11 vom: 13. Okt., Seite 7363-7376
1. Verfasser: Han, Wencheng (VerfasserIn)
Weitere Verfasser: Dong, Xingping, Zhang, Yiyuan, Crandall, David, Xu, Cheng-Zhong, Shen, Jianbing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM372320678
003 DE-627
005 20241004232100.0
007 cr uuu---uuuuu
008 240515s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3400873  |2 doi 
028 5 2 |a pubmed24n1557.xml 
035 |a (DE-627)NLM372320678 
035 |a (NLM)38743545 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Wencheng  |e verfasserin  |4 aut 
245 1 0 |a Asymmetric Convolution  |b An Efficient and Generalized Method to Fuse Feature Maps in Multiple Vision Tasks 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Fusing features from different sources is a critical aspect of many computer vision tasks. Existing approaches can be roughly categorized as parameter-free or learnable operations. However, parameter-free modules are limited in their ability to benefit from offline learning, leading to poor performance in some challenging situations. Learnable fusing methods are often space-consuming and time-consuming, particularly when fusing features with different shapes. To address these shortcomings, we conducted an in-depth analysis of the limitations associated with both fusion methods. Based on our findings, we propose a generalized module named Asymmetric Convolution Module (ACM). This module can learn to encode effective priors during offline training and efficiently fuse feature maps with different shapes in specific tasks. Specifically, we propose a mathematically equivalent method for replacing costly convolutions on concatenated features. This method can be widely applied to fuse feature maps across different shapes. Furthermore, distinguished from parameter-free operations that can only fuse two features of the same type, our ACM is general, flexible, and can fuse multiple features of different types. To demonstrate the generality and efficiency of ACM, we integrate it into several state-of-the-art models on three representative vision tasks. Extensive experimental results on three tasks and several datasets demonstrate that our new module can bring significant improvements and noteworthy efficiency 
650 4 |a Journal Article 
700 1 |a Dong, Xingping  |e verfasserin  |4 aut 
700 1 |a Zhang, Yiyuan  |e verfasserin  |4 aut 
700 1 |a Crandall, David  |e verfasserin  |4 aut 
700 1 |a Xu, Cheng-Zhong  |e verfasserin  |4 aut 
700 1 |a Shen, Jianbing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 11 vom: 13. Okt., Seite 7363-7376  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:11  |g day:13  |g month:10  |g pages:7363-7376 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3400873  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 11  |b 13  |c 10  |h 7363-7376