|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM372313388 |
003 |
DE-627 |
005 |
20240801233050.0 |
007 |
cr uuu---uuuuu |
008 |
240515s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202402695
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1488.xml
|
035 |
|
|
|a (DE-627)NLM372313388
|
035 |
|
|
|a (NLM)38742820
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ling, Zhang-Chi
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Cultivating High-Performance Flexible All-in-One Supercapacitors With 3D Network Through Continuous Biosynthesis
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.08.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Flexible supercapacitors can potentially power next-generation flexible electronics. However, the mechanical and electrochemical stability of flexible supercapacitors under different flexible conditions is limited by the weak bonding between adjacent layers, posing a significant hindrance to their practical applicability. Herein, based on the uninterrupted 3D network during the growth of bacterial cellulose (BC), a flexible all-in-one supercapacitor is cultivated through a continuous biosynthesis process. This strategy ensures the continuity of the 3D network of BC throughout the material, thereby forming a continuous electrode-separator-electrode structure. Benefitting from this bioinspired structure, the all-in-one supercapacitor not only achieves a high areal capacitance (3.79 F cm-2) of electrodes but also demonstrates the integration of high tensile strength (2.15 MPa), high shear strength (more than 54.6 kPa), and high bending resistance, indicating a novel pathway toward high-performance flexible power sources
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a all‐in‐one structure
|
650 |
|
4 |
|a continuous biosynthesis
|
650 |
|
4 |
|a high bending resistance
|
650 |
|
4 |
|a high shear strength
|
650 |
|
4 |
|a uninterrupted 3D network
|
700 |
1 |
|
|a He, Qian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Huai-Bin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Zhan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Han, Zi-Meng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Luo, Xiao-Han
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Kun-Peng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guan, Qing-Fang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Shu-Hong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 31 vom: 01. Aug., Seite e2402695
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:31
|g day:01
|g month:08
|g pages:e2402695
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202402695
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 31
|b 01
|c 08
|h e2402695
|