Biarchetype Analysis : Simultaneous Learning of Observations and Features Based on Extremes

We introduce a novel exploratory technique, termed biarchetype analysis, which extends archetype analysis to simultaneously identify archetypes of both observations and features. This innovative unsupervised machine learning tool aims to represent observations and features through instances of pure...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 13. Mai
1. Verfasser: Alcacer, Aleix (VerfasserIn)
Weitere Verfasser: Epifanio, Irene, Gual-Arnau, Ximo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM37228034X
003 DE-627
005 20240516233139.0
007 cr uuu---uuuuu
008 240514s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3400730  |2 doi 
028 5 2 |a pubmed24n1409.xml 
035 |a (DE-627)NLM37228034X 
035 |a (NLM)38739514 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Alcacer, Aleix  |e verfasserin  |4 aut 
245 1 0 |a Biarchetype Analysis  |b Simultaneous Learning of Observations and Features Based on Extremes 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a We introduce a novel exploratory technique, termed biarchetype analysis, which extends archetype analysis to simultaneously identify archetypes of both observations and features. This innovative unsupervised machine learning tool aims to represent observations and features through instances of pure types, or biarchetypes, which are easily interpretable as they embody mixtures of observations and features. Furthermore, the observations and features are expressed as mixtures of the biarchetypes, which makes the structure of the data easier to understand. We propose an algorithm to solve biarchetype analysis. Although clustering is not the primary aim of this technique, biarchetype analysis is demonstrated to offer significant advantages over biclustering methods, particularly in terms of interpretability. This is attributed to biarchetypes being extreme instances, in contrast to the centroids produced by biclustering, which inherently enhances human comprehension. The application of biarchetype analysis across various machine learning challenges underscores its value, and both the source code and examples are readily accessible in R and Python at https://github.com/aleixalcacer/JA-BIAA 
650 4 |a Journal Article 
700 1 |a Epifanio, Irene  |e verfasserin  |4 aut 
700 1 |a Gual-Arnau, Ximo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 13. Mai  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:13  |g month:05 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3400730  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 13  |c 05