High-Entropy Configuration Strategy to Build High Performance Na-Ion Layered Oxide Cathodes Derived from Simple Techniques

Layered transition metal oxides are commonly used as the cathode materials in sodium-ion batteries due to their low cost and easy manufacturing. However, the application is hindered by poor rate performance and complex phase transitions. To address these challenges, a new seven-component high-entrop...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 21 vom: 28. Mai, Seite 11116-11124
1. Verfasser: Li, Xiangnan (VerfasserIn)
Weitere Verfasser: Tang, Xinyu, Ge, Ming, Zhang, Mengdan, Liu, Wenfeng, Liu, Xiaojian, Cui, Yuantao, Zhang, Huishuang, Yin, Yanhong, Yang, Shuting
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Layered transition metal oxides are commonly used as the cathode materials in sodium-ion batteries due to their low cost and easy manufacturing. However, the application is hindered by poor rate performance and complex phase transitions. To address these challenges, a new seven-component high-entropy layered oxide cathode material, O3-NaNi0.25Fe0.15Mn0.3Ti0.1Sn0.05Co0.05Li0.1O2 (HEO) has been developed. The entropy stabilization effect plays a crucial role in improving the performance of electrochemical systems and the stability of structures. The HEO exhibits a specific discharge capacity of 154.1 mA h g-1 at 0.1 C and 94.5 mA h g-1 at 7 C. In-situ and ex-situ XRD results demonstrate that the HEO effectively retards complex phase transitions. This work provides a high-entropy design for the storage materials with a high energy density. Meanwhile, it eliminates industry doubts about the performance of sodium ion layered oxide cathode materials
Beschreibung:Date Revised 28.05.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.4c00676