The Unprecedented Biodegradable Polyzwitterion : A Removal-Free Patch for Accelerating Infected Diabetic Wound Healing

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 30 vom: 06. Juli, Seite e2404297
1. Verfasser: Wang, Zhuoya (VerfasserIn)
Weitere Verfasser: Chen, Danyang, Wang, Hongying, Bao, Siyu, Lang, Liping, Cui, Chunyan, Song, Haotian, Yang, Jianhai, Liu, Wenguang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article antibacterial antioxidant degradable removal‐free zwitterion Anti-Bacterial Agents Biocompatible Materials Polymers Reactive Oxygen Species mehr... Antioxidants Betaine 3SCV180C9W
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Zwitterionic polymers have emerged as an important class of biomaterials to construct wound dressings and antifouling coatings over the past decade due to their excellent hydrophilicity. However, all the reported zwitterionic polymers as wound dressings are nondegradable because of noncleavable carbon─carbon bonding backbones, and must be removed periodically after treatment to avoid hypoxia in the wound, thus leading to potential secondary injury. In this work, a biodegradable polyzwitterion patch is fabricated for the first time by ring-opening polymerization of carboxybetaine dithiolane (CBDS), which is self-crosslinked via inter-amide hydrogen bonds and zwitterionic dipole-dipole interactions on the side chains. The unprecedented polyCBDS (PCBDS) patch demonstrates enough ductility owing to the intermolecular physical interactions to fully cover irregular wounds, also showing excellent biodegradability and antifouling performance resulted from the existence of disulfide bonds and carboxybetaine groups. Besides, the PCBDS degradation-induced released CBDS owns potent antioxidant and antibacterial activities. This PCBDS patch is used as a diabetic wound dressing, inhibiting bacterial adhesion on the external surface, and its degradation products can exactly kill bacteria and scavenge excessive reactive oxygen species (ROS) at the wound site to regulate local microenvironment, including regulation of cytokine express and macrophage polarization, accelerating infected diabetic wound repair, and also avoiding the potential secondary injury
Beschreibung:Date Completed 25.07.2024
Date Revised 25.07.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202404297