Lightweight Deep Exemplar Colorization via Semantic Attention-Guided Laplacian Pyramid

Exemplar-based colorization aims to generate plausible colors for a grayscale image with the guidance of a color reference image. The main challenging problem is finding the correct semantic correspondence between the target image and the reference image. However, the colors of the object and backgr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 09. Mai
1. Verfasser: Zou, Chengyi (VerfasserIn)
Weitere Verfasser: Wan, Shuai, Blanch, Marc Gorriz, Murn, Luka, Mrak, Marta, Sock, Juil, Yang, Fei, Herranz, Luis
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM372113109
003 DE-627
005 20240510233521.0
007 cr uuu---uuuuu
008 240510s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3398791  |2 doi 
028 5 2 |a pubmed24n1403.xml 
035 |a (DE-627)NLM372113109 
035 |a (NLM)38722720 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zou, Chengyi  |e verfasserin  |4 aut 
245 1 0 |a Lightweight Deep Exemplar Colorization via Semantic Attention-Guided Laplacian Pyramid 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Exemplar-based colorization aims to generate plausible colors for a grayscale image with the guidance of a color reference image. The main challenging problem is finding the correct semantic correspondence between the target image and the reference image. However, the colors of the object and background are often confused in the existing methods. Besides, these methods usually use simple encoder-decoder architectures or pyramid structures to extract features and lack appropriate fusion mechanisms, which results in the loss of high-frequency information or high complexity. To address these problems, this paper proposes a lightweight semantic attention-guided Laplacian pyramid network (SAGLP-Net) for deep exemplar-based colorization, exploiting the inherent multi-scale properties of color representations. They are exploited through a Laplacian pyramid, and semantic information is introduced as high-level guidance to align the object and background information. Specially, a semantic guided non-local attention fusion module is designed to exploit the long-range dependency and fuse the local and global features. Moreover, a Laplacian pyramid fusion module based on criss-cross attention is proposed to fuse high frequency components in the large-scale domain. An unsupervised multi-scale multi-loss training strategy is further introduced for network training, which combines pixel loss, color histogram loss, total variance regularisation, and adversarial loss. Experimental results demonstrate that our colorization method achieves better subjective and objective performance with lower complexity than the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Wan, Shuai  |e verfasserin  |4 aut 
700 1 |a Blanch, Marc Gorriz  |e verfasserin  |4 aut 
700 1 |a Murn, Luka  |e verfasserin  |4 aut 
700 1 |a Mrak, Marta  |e verfasserin  |4 aut 
700 1 |a Sock, Juil  |e verfasserin  |4 aut 
700 1 |a Yang, Fei  |e verfasserin  |4 aut 
700 1 |a Herranz, Luis  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 09. Mai  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:09  |g month:05 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3398791  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 09  |c 05