3D Laser Writing of Low-Loss Cross-Section-Variable Type-I Optical Waveguide Passive/Active Integrated Devices in Single Crystals
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 32 vom: 22. Aug., Seite e2404493 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article 3D laser writing passive/active waveguide devices single crystal sub‐µm resolution type‐I optical waveguide |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. Optical waveguides fabricated in single crystals offer crucial passive/active optical components for photonic integrated circuits. Single crystals possess inherent advantages over their amorphous counterpart, such as lower optical losses in visible-to-mid-infrared band, larger peak emission cross-section, higher doping concentration. However, the writing of Type-I positive refractive index modified waveguides in single crystals using femtosecond laser technology presents significant challenges. Herein, this work introduces a novel femtosecond laser direct writing technique that combines slit-shaping with an immersion oil objective to fabricate low-loss Type-I waveguides in single crystals. This approach allows for precise control of waveguide shape, size, mode-field, and refractive index distribution, with a spatial resolution as high as 700 nm and a high positive refractive index variation on the order of 10-2, introducing new degrees of freedom to design and fabricate passive/active optical waveguide devices. As a proof-of-concept, this work successfully produces a 7 mm-long circular-shaped gain waveguide (≈10 µm in diameter) in an Er3+-doped YAG single crystal, exhibiting a propagation loss as low as 0.23 dB cm-1, a net gain of ≈3 dB and a polarization-insensitive character. The newly-developed technique is theoretically applicable to arbitrary single crystals, holding promising potential for various applications in integrated optics, optical communication, and photonic quantum circuits |
---|---|
Beschreibung: | Date Revised 08.08.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202404493 |