DunHuangStitch : Unsupervised Deep Image Stitching of Dunhuang Murals

The digital construction of cultural heritage promotes communication and sharing of digital cultural resources across time and space. Digital storage serves as the foundation for the digital construction of cultural artifacts. In the digital storage of Dunhuang murals, image stitching plays a critic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 08. Mai
1. Verfasser: Mei, Yuan (VerfasserIn)
Weitere Verfasser: Yang, Lichun, Wang, Mengsi, Yu, Tianxiu, Wu, Kaijun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM372065023
003 DE-627
005 20240509233041.0
007 cr uuu---uuuuu
008 240509s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3398289  |2 doi 
028 5 2 |a pubmed24n1402.xml 
035 |a (DE-627)NLM372065023 
035 |a (NLM)38717890 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mei, Yuan  |e verfasserin  |4 aut 
245 1 0 |a DunHuangStitch  |b Unsupervised Deep Image Stitching of Dunhuang Murals 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The digital construction of cultural heritage promotes communication and sharing of digital cultural resources across time and space. Digital storage serves as the foundation for the digital construction of cultural artifacts. In the digital storage of Dunhuang murals, image stitching plays a critical role in restoring the complete image of the cave murals. Traditional image stitching methods are constrained by the detection accuracy of feature points and are not fit for stitching low-texture murals. Despite deep learning-based image stitching methods, parallax misalignment and ghosting are still prevalent issues. For this reason, we perform the first Dunhuang mural stitching based on deep learning in this paper. This is in response to the need for digitizing and storing Dunhuang murals. Two mural stitching datasets are constructed, and we design a progressive regression image alignment network and a feature differential reconstruction soft-coded seam stitching network. We also introduce a soft-coded seam quality evaluation method. The algorithm presented in this paper achieves state-of-the-art alignment and stitching performance in the mural stitching task through unsupervised learning with a smaller number of model parameters, which provides technical support for the digitization and preservation of Dunhuang murals. The codes and models will be available at https://github.com/MmelodYy/DunHuangStitch 
650 4 |a Journal Article 
700 1 |a Yang, Lichun  |e verfasserin  |4 aut 
700 1 |a Wang, Mengsi  |e verfasserin  |4 aut 
700 1 |a Yu, Tianxiu  |e verfasserin  |4 aut 
700 1 |a Wu, Kaijun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 08. Mai  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:08  |g month:05 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3398289  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 08  |c 05