|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM372064140 |
003 |
DE-627 |
005 |
20240726232330.0 |
007 |
cr uuu---uuuuu |
008 |
240508s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202404093
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1482.xml
|
035 |
|
|
|a (DE-627)NLM372064140
|
035 |
|
|
|a (NLM)38717804
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Yueyang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Ultrastable Electrolytic Zn-I2 Batteries Based on Nanocarbon Wrapped by Highly Efficient Single-Atom Fe-NC Iodine Catalysts
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 25.07.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Aqueous Zn-iodine (Zn-I2) conversion batteries with iodine redox chemistry suffers the severe polyiodide shuttling and sluggish redox kinetics, which impede the battery lifespan and rate capability. Herein, an ultrastable Zn-I2 battery is introduced based on single-atom Fe-N-C encapsulated high-surface-area carbon (HCFeNC) as the core-shell cathode materials, which accelerate the I-/I3 -/I° conversion significantly. The robust chemical-physical interaction between polyiodides and Fe-N4 sites tightly binds the polyiodide ions and suppresses the polyiodide shuttling, thereby significantly enhancing the coulombic efficiency. As a result, the core-shell HC@FeNC cathode endows the electrolytic Zn-I2 battery with an excellent capacity, remarkable rate capability, and an ultralong lifespan over 60 000 cycles. More importantly, a practical 253 Wh kg-1 pouch cell shows good capacity retention of 84% after 100 cycles, underscoring its considerable potential for commercial Zn-I2 batteries
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Fe–N4 catalytic sites
|
650 |
|
4 |
|a core–shell structure
|
650 |
|
4 |
|a electrolytic Zn–I2 battery
|
650 |
|
4 |
|a polyiodide conversion
|
650 |
|
4 |
|a ultralong lifespan
|
700 |
1 |
|
|a Jin, Xiangrong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiong, Jiawei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Qingyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Qi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Runze
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Jiazhan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fan, Yanchen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Yi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Xiaoming
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 30 vom: 21. Juli, Seite e2404093
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:30
|g day:21
|g month:07
|g pages:e2404093
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202404093
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 30
|b 21
|c 07
|h e2404093
|