DreamAnime : Learning Style-Identity Textual Disentanglement for Anime and Beyond

Text-to-image generation models have significantly broadened the horizons of creative expression through the power of natural language. However, navigating these models to generate unique concepts, alter their appearance, or reimagine them in unfamiliar roles presents an intricate challenge. For ins...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 07. Mai
Auteur principal: Xu, Chenshu (Auteur)
Autres auteurs: Xu, Yangyang, Zhang, Huaidong, Xu, Xuemiao, He, Shengfeng
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM372022197
003 DE-627
005 20250306044631.0
007 cr uuu---uuuuu
008 240508s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3397712  |2 doi 
028 5 2 |a pubmed25n1239.xml 
035 |a (DE-627)NLM372022197 
035 |a (NLM)38713571 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Chenshu  |e verfasserin  |4 aut 
245 1 0 |a DreamAnime  |b Learning Style-Identity Textual Disentanglement for Anime and Beyond 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Text-to-image generation models have significantly broadened the horizons of creative expression through the power of natural language. However, navigating these models to generate unique concepts, alter their appearance, or reimagine them in unfamiliar roles presents an intricate challenge. For instance, how can we exploit language-guided models to transpose an anime character into a different art style, or envision a beloved character in a radically different setting or role? This paper unveils a novel approach named DreamAnime, designed to provide this level of creative freedom. Using a minimal set of 2-3 images of a user-specified concept such as an anime character or an art style, we teach our model to encapsulate its essence through novel "words" in the embedding space of a pre-existing text-to-image model. Crucially, we disentangle the concepts of style and identity into two separate "words", thus providing the ability to manipulate them independently. These distinct "words" can then be pieced together into natural language sentences, promoting an intuitive and personalized creative process. Empirical results suggest that this disentanglement into separate word embeddings successfully captures a broad range of unique and complex concepts, with each word focusing on style or identity as appropriate. Comparisons with existing methods illustrate DreamAnime's superior capacity to accurately interpret and recreate the desired concepts across various applications and tasks. Code is available at https://github.com/chnshx/DreamAnime 
650 4 |a Journal Article 
700 1 |a Xu, Yangyang  |e verfasserin  |4 aut 
700 1 |a Zhang, Huaidong  |e verfasserin  |4 aut 
700 1 |a Xu, Xuemiao  |e verfasserin  |4 aut 
700 1 |a He, Shengfeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 07. Mai  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:PP  |g year:2024  |g day:07  |g month:05 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3397712  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 07  |c 05