Relation-driven Query of Multiple Time Series

Querying time series based on their relations is a crucial part of multiple time series analysis. By retrieving and understanding time series relations, analysts can easily detect anomalies and validate hypotheses in complex time series datasets. However, current relation extraction approaches, incl...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 07. Mai
Auteur principal: Liu, Shuhan (Auteur)
Autres auteurs: Tian, Yuan, Deng, Zikun, Cui, Weiwei, Zhang, Haidong, Weng, Di, Wu, Yingcai
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM372022138
003 DE-627
005 20250306044631.0
007 cr uuu---uuuuu
008 240508s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3397554  |2 doi 
028 5 2 |a pubmed25n1239.xml 
035 |a (DE-627)NLM372022138 
035 |a (NLM)38713569 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Shuhan  |e verfasserin  |4 aut 
245 1 0 |a Relation-driven Query of Multiple Time Series 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Querying time series based on their relations is a crucial part of multiple time series analysis. By retrieving and understanding time series relations, analysts can easily detect anomalies and validate hypotheses in complex time series datasets. However, current relation extraction approaches, including knowledge- and data-driven ones, tend to be laborious and do not support heterogeneous relations. By conducting a formative study with 11 experts, we concluded six time series relations, including correlation, causality, similarity, lag, arithmetic, and meta, and summarized three pain points in querying time series involving these relations. We proposed RelaQ, an interactive system that supports the time series query via relation specifications. RelaQ allows users to intuitively specify heterogeneous relations when querying multiple time series, understand the query results based on a scalable, multi-level visualization, and explore possible relations beyond the existing queries. RelaQ is evaluated with two cases and a user study with 12 participants, showing promising effectiveness and usability 
650 4 |a Journal Article 
700 1 |a Tian, Yuan  |e verfasserin  |4 aut 
700 1 |a Deng, Zikun  |e verfasserin  |4 aut 
700 1 |a Cui, Weiwei  |e verfasserin  |4 aut 
700 1 |a Zhang, Haidong  |e verfasserin  |4 aut 
700 1 |a Weng, Di  |e verfasserin  |4 aut 
700 1 |a Wu, Yingcai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 07. Mai  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:PP  |g year:2024  |g day:07  |g month:05 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3397554  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 07  |c 05