Somtimes : self organizing maps for time series clustering and its application to serious illness conversations

© The Author(s) 2023.

Bibliographische Detailangaben
Veröffentlicht in:Data mining and knowledge discovery. - 2003. - 38(2024), 3 vom: 06., Seite 813-839
1. Verfasser: Javed, Ali (VerfasserIn)
Weitere Verfasser: Rizzo, Donna M, Lee, Byung Suk, Gramling, Robert
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Data mining and knowledge discovery
Schlagworte:Journal Article Clustering Dynamic time warping Self-organizing maps Serious illness conversations Time series clustering
LEADER 01000caa a22002652 4500
001 NLM37200184X
003 DE-627
005 20250104233740.0
007 cr uuu---uuuuu
008 240507s2024 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10618-023-00979-9  |2 doi 
028 5 2 |a pubmed24n1651.xml 
035 |a (DE-627)NLM37200184X 
035 |a (NLM)38711534 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Javed, Ali  |e verfasserin  |4 aut 
245 1 0 |a Somtimes  |b self organizing maps for time series clustering and its application to serious illness conversations 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s) 2023. 
520 |a There is demand for scalable algorithms capable of clustering and analyzing large time series data. The Kohonen self-organizing map (SOM) is an unsupervised artificial neural network for clustering, visualizing, and reducing the dimensionality of complex data. Like all clustering methods, it requires a measure of similarity between input data (in this work time series). Dynamic time warping (DTW) is one such measure, and a top performer that accommodates distortions when aligning time series. Despite its popularity in clustering, DTW is limited in practice because the runtime complexity is quadratic with the length of the time series. To address this, we present a new a self-organizing map for clustering TIME Series, called SOMTimeS, which uses DTW as the distance measure. The method has similar accuracy compared with other DTW-based clustering algorithms, yet scales better and runs faster. The computational performance stems from the pruning of unnecessary DTW computations during the SOM's training phase. For comparison, we implement a similar pruning strategy for K-means, and call the latter K-TimeS. SOMTimeS and K-TimeS pruned 43% and 50% of the total DTW computations, respectively. Pruning effectiveness, accuracy, execution time and scalability are evaluated using 112 benchmark time series datasets from the UC Riverside classification archive, and show that for similar accuracy, a 1.8× speed-up on average for SOMTimeS and K-TimeS, respectively with that rates vary between 1× and 18× depending on the dataset. We also apply SOMTimeS to a healthcare study of patient-clinician serious illness conversations to demonstrate the algorithm's utility with complex, temporally sequenced natural language 
520 |a Supplementary Information: The online version contains supplementary material available at 10.1007/s10618-023-00979-9 
650 4 |a Journal Article 
650 4 |a Clustering 
650 4 |a Dynamic time warping 
650 4 |a Self-organizing maps 
650 4 |a Serious illness conversations 
650 4 |a Time series clustering 
700 1 |a Rizzo, Donna M  |e verfasserin  |4 aut 
700 1 |a Lee, Byung Suk  |e verfasserin  |4 aut 
700 1 |a Gramling, Robert  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Data mining and knowledge discovery  |d 2003  |g 38(2024), 3 vom: 06., Seite 813-839  |w (DE-627)NLM191691062  |x 1384-5810  |7 nnns 
773 1 8 |g volume:38  |g year:2024  |g number:3  |g day:06  |g pages:813-839 
856 4 0 |u http://dx.doi.org/10.1007/s10618-023-00979-9  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_61 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_121 
912 |a GBV_ILN_285 
912 |a GBV_ILN_350 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2002 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2012 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2043 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2162 
951 |a AR 
952 |d 38  |j 2024  |e 3  |b 06  |h 813-839