Scalable Customization of Crystallographic Plane Controllable Lithium Metal Anodes for Ultralong-Lasting Lithium Metal Batteries
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 30 vom: 21. Juli, Seite e2403570 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article accumulative roll bonding crystallographic plane polished Li(110) polished Li(200) rechargeable Li metal batteries |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. A formidable challenge to achieve the practical applications of rechargeable lithium (Li) metal batteries (RLMBs) is to suppress the uncontrollable growth of Li dendrites. One of the most effective solutions is to fabricate Li metal anodes with specific crystal plane, but still lack of a simple and high-efficient approach. Herein, a facile and controllable way for the scalable customization of polished Li metal anodes with highly preferred (110) and (200) crystallographic orientation (donating as polished Li(110) and polished Li(200), respectively) by regulating the times of accumulative roll bonding, is reported. According to the inherent characteristics of polished Li(110)/Li(200), the influence of Li atomic structure on the electrochemical performance of RLMBs is deeply elucidated by combining theoretical calculations with relative experimental proofs. In particular, a polished Li(110) crystal plane is demonstrated to induce Li+ uniform deposition, promoting the formation of flat and dense Li deposits. Impressively, the polished Li(110)||LiFePO4 full cells exhibit unprecedented cycling stability with 10 000 cycles at 10 C almost without capacity degradation, indicating the great potential application prospect of such textured Li metal. More valuably, this work provides an important reference for low-cost, continued, and large-scale production of Li metal anodes with highly preferred crystal orientation through roll-to-roll manufacturability |
---|---|
Beschreibung: | Date Revised 25.07.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202403570 |