Range-separated density functional theory using multiresolution analysis and quantum computing

© 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 45(2024), 23 vom: 05. Juli, Seite 1987-2000
1. Verfasser: Poirier, Nicolas (VerfasserIn)
Weitere Verfasser: Kottmann, Jakob S, Aspuru-Guzik, Alán, Mongeau, Luc, Najafi-Yazdi, Alireza
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Ab initio calculations density functional calculation multiresolution analysis quantum computing variational quantum eigensolver
LEADER 01000caa a22002652 4500
001 NLM371977940
003 DE-627
005 20240710232136.0
007 cr uuu---uuuuu
008 240506s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27384  |2 doi 
028 5 2 |a pubmed24n1466.xml 
035 |a (DE-627)NLM371977940 
035 |a (NLM)38709143 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Poirier, Nicolas  |e verfasserin  |4 aut 
245 1 0 |a Range-separated density functional theory using multiresolution analysis and quantum computing 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. 
520 |a Quantum computers are expected to outperform classical computers for specific problems in quantum chemistry. Such calculations remain expensive, but costs can be lowered through the partition of the molecular system. In the present study, partition was achieved with range-separated density functional theory (RS-DFT). The use of RS-DFT reduces both the basis set size and the active space size dependence of the ground state energy in comparison with the use of wave function theory (WFT) alone. The utilization of pair natural orbitals (PNOs) in place of canonical molecular orbitals (MOs) results in more compact qubit Hamiltonians. To test this strategy, a basis-set independent framework, known as multiresolution analysis (MRA), was employed to generate PNOs. Tests were conducted with the variational quantum eigensolver for a number of molecules. The results show that the proposed approach reduces the number of qubits needed to reach a target energy accuracy 
650 4 |a Journal Article 
650 4 |a Ab initio calculations 
650 4 |a density functional calculation 
650 4 |a multiresolution analysis 
650 4 |a quantum computing 
650 4 |a variational quantum eigensolver 
700 1 |a Kottmann, Jakob S  |e verfasserin  |4 aut 
700 1 |a Aspuru-Guzik, Alán  |e verfasserin  |4 aut 
700 1 |a Mongeau, Luc  |e verfasserin  |4 aut 
700 1 |a Najafi-Yazdi, Alireza  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 45(2024), 23 vom: 05. Juli, Seite 1987-2000  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:45  |g year:2024  |g number:23  |g day:05  |g month:07  |g pages:1987-2000 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27384  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2024  |e 23  |b 05  |c 07  |h 1987-2000