Unveiling the transferability of PLSR models for leaf trait estimation : lessons from a comprehensive analysis with a novel global dataset

© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 243(2024), 1 vom: 01. Juni, Seite 111-131
1. Verfasser: Ji, Fujiang (VerfasserIn)
Weitere Verfasser: Li, Fa, Hao, Dalei, Shiklomanov, Alexey N, Yang, Xi, Townsend, Philip A, Dashti, Hamid, Nakaji, Tatsuro, Kovach, Kyle R, Liu, Haoran, Luo, Meng, Chen, Min
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article cross‐validation leaf spectroscopy leaf traits partial least squares regression transferability Chlorophyll 1406-65-1 Water 059QF0KO0R mehr... Carotenoids 36-88-4
LEADER 01000caa a22002652 4500
001 NLM371971152
003 DE-627
005 20240606232729.0
007 cr uuu---uuuuu
008 240506s2024 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.19807  |2 doi 
028 5 2 |a pubmed24n1430.xml 
035 |a (DE-627)NLM371971152 
035 |a (NLM)38708434 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ji, Fujiang  |e verfasserin  |4 aut 
245 1 0 |a Unveiling the transferability of PLSR models for leaf trait estimation  |b lessons from a comprehensive analysis with a novel global dataset 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2024 
500 |a Date Revised 06.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation. 
520 |a Leaf traits are essential for understanding many physiological and ecological processes. Partial least squares regression (PLSR) models with leaf spectroscopy are widely applied for trait estimation, but their transferability across space, time, and plant functional types (PFTs) remains unclear. We compiled a novel dataset of paired leaf traits and spectra, with 47 393 records for > 700 species and eight PFTs at 101 globally distributed locations across multiple seasons. Using this dataset, we conducted an unprecedented comprehensive analysis to assess the transferability of PLSR models in estimating leaf traits. While PLSR models demonstrate commendable performance in predicting chlorophyll content, carotenoid, leaf water, and leaf mass per area prediction within their training data space, their efficacy diminishes when extrapolating to new contexts. Specifically, extrapolating to locations, seasons, and PFTs beyond the training data leads to reduced R2 (0.12-0.49, 0.15-0.42, and 0.25-0.56) and increased NRMSE (3.58-18.24%, 6.27-11.55%, and 7.0-33.12%) compared with nonspatial random cross-validation. The results underscore the importance of incorporating greater spectral diversity in model training to boost its transferability. These findings highlight potential errors in estimating leaf traits across large spatial domains, diverse PFTs, and time due to biased validation schemes, and provide guidance for future field sampling strategies and remote sensing applications 
650 4 |a Journal Article 
650 4 |a cross‐validation 
650 4 |a leaf spectroscopy 
650 4 |a leaf traits 
650 4 |a partial least squares regression 
650 4 |a transferability 
650 7 |a Chlorophyll  |2 NLM 
650 7 |a 1406-65-1  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Carotenoids  |2 NLM 
650 7 |a 36-88-4  |2 NLM 
700 1 |a Li, Fa  |e verfasserin  |4 aut 
700 1 |a Hao, Dalei  |e verfasserin  |4 aut 
700 1 |a Shiklomanov, Alexey N  |e verfasserin  |4 aut 
700 1 |a Yang, Xi  |e verfasserin  |4 aut 
700 1 |a Townsend, Philip A  |e verfasserin  |4 aut 
700 1 |a Dashti, Hamid  |e verfasserin  |4 aut 
700 1 |a Nakaji, Tatsuro  |e verfasserin  |4 aut 
700 1 |a Kovach, Kyle R  |e verfasserin  |4 aut 
700 1 |a Liu, Haoran  |e verfasserin  |4 aut 
700 1 |a Luo, Meng  |e verfasserin  |4 aut 
700 1 |a Chen, Min  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 243(2024), 1 vom: 01. Juni, Seite 111-131  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:243  |g year:2024  |g number:1  |g day:01  |g month:06  |g pages:111-131 
856 4 0 |u http://dx.doi.org/10.1111/nph.19807  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 243  |j 2024  |e 1  |b 01  |c 06  |h 111-131