Multilevel Monte Carlo Methods for Stochastic Convection-Diffusion Eigenvalue Problems

© The Author(s) 2024.

Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing. - 1999. - 99(2024), 3 vom: 16., Seite 77
1. Verfasser: Cui, Tiangang (VerfasserIn)
Weitere Verfasser: De Sterck, Hans, Gilbert, Alexander D, Polishchuk, Stanislav, Scheichl, Robert
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of scientific computing
Schlagworte:Journal Article Convection–diffusion eigenvalue problems Homotopy Multilevel Monte Carlo Uncertainty quantification
LEADER 01000caa a22002652c 4500
001 NLM371967023
003 DE-627
005 20250306044218.0
007 cr uuu---uuuuu
008 240506s2024 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10915-024-02539-9  |2 doi 
028 5 2 |a pubmed25n1239.xml 
035 |a (DE-627)NLM371967023 
035 |a (NLM)38708025 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cui, Tiangang  |e verfasserin  |4 aut 
245 1 0 |a Multilevel Monte Carlo Methods for Stochastic Convection-Diffusion Eigenvalue Problems 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s) 2024. 
520 |a We develop new multilevel Monte Carlo (MLMC) methods to estimate the expectation of the smallest eigenvalue of a stochastic convection-diffusion operator with random coefficients. The MLMC method is based on a sequence of finite element (FE) discretizations of the eigenvalue problem on a hierarchy of increasingly finer meshes. For the discretized, algebraic eigenproblems we use both the Rayleigh quotient (RQ) iteration and implicitly restarted Arnoldi (IRA), providing an analysis of the cost in each case. By studying the variance on each level and adapting classical FE error bounds to the stochastic setting, we are able to bound the total error of our MLMC estimator and provide a complexity analysis. As expected, the complexity bound for our MLMC estimator is superior to plain Monte Carlo. To improve the efficiency of the MLMC further, we exploit the hierarchy of meshes and use coarser approximations as starting values for the eigensolvers on finer ones. To improve the stability of the MLMC method for convection-dominated problems, we employ two additional strategies. First, we consider the streamline upwind Petrov-Galerkin formulation of the discrete eigenvalue problem, which allows us to start the MLMC method on coarser meshes than is possible with standard FEs. Second, we apply a homotopy method to add stability to the eigensolver for each sample. Finally, we present a multilevel quasi-Monte Carlo method that replaces Monte Carlo with a quasi-Monte Carlo (QMC) rule on each level. Due to the faster convergence of QMC, this improves the overall complexity. We provide detailed numerical results comparing our different strategies to demonstrate the practical feasibility of the MLMC method in different use cases. The results support our complexity analysis and further demonstrate the superiority over plain Monte Carlo in all cases 
650 4 |a Journal Article 
650 4 |a Convection–diffusion eigenvalue problems 
650 4 |a Homotopy 
650 4 |a Multilevel Monte Carlo 
650 4 |a Uncertainty quantification 
700 1 |a De Sterck, Hans  |e verfasserin  |4 aut 
700 1 |a Gilbert, Alexander D  |e verfasserin  |4 aut 
700 1 |a Polishchuk, Stanislav  |e verfasserin  |4 aut 
700 1 |a Scheichl, Robert  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of scientific computing  |d 1999  |g 99(2024), 3 vom: 16., Seite 77  |w (DE-627)NLM098177567  |x 0885-7474  |7 nnas 
773 1 8 |g volume:99  |g year:2024  |g number:3  |g day:16  |g pages:77 
856 4 0 |u http://dx.doi.org/10.1007/s10915-024-02539-9  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 99  |j 2024  |e 3  |b 16  |h 77