Multi-View Time-Series Hypergraph Neural Network for Action Recognition

Recently, action recognition has attracted considerable attention in the field of computer vision. In dynamic circumstances and complicated backgrounds, there are some problems, such as object occlusion, insufficient light, and weak correlation of human body joints, resulting in skeleton-based human...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 03., Seite 3301-3313
1. Verfasser: Ma, Nan (VerfasserIn)
Weitere Verfasser: Wu, Zhixuan, Feng, Yifan, Wang, Cheng, Gao, Yue
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM371896371
003 DE-627
005 20240510233126.0
007 cr uuu---uuuuu
008 240504s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3391913  |2 doi 
028 5 2 |a pubmed24n1403.xml 
035 |a (DE-627)NLM371896371 
035 |a (NLM)38700958 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Nan  |e verfasserin  |4 aut 
245 1 0 |a Multi-View Time-Series Hypergraph Neural Network for Action Recognition 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recently, action recognition has attracted considerable attention in the field of computer vision. In dynamic circumstances and complicated backgrounds, there are some problems, such as object occlusion, insufficient light, and weak correlation of human body joints, resulting in skeleton-based human action recognition accuracy being very low. To address this issue, we propose a Multi-View Time-Series Hypergraph Neural Network (MV-TSHGNN) method. The framework is composed of two main parts: the construction of a multi-view time-series hypergraph structure and the learning process of multi-view time-series hypergraph convolutions. Specifically, given the multi-view video sequence frames, we first extract the joint features of actions from different views. Then, limb components and adjacent joints spatial hypergraphs based on the joints of different views at the same time are constructed respectively, temporal hypergraphs are constructed joints of the same view at continuous times, which are established high-order semantic relationships and cooperatively generate complementary action features. After that, we design a multi-view time-series hypergraph neural network to efficiently learn the features of spatial and temporal hypergraphs, and effectively improve the accuracy of skeleton-based action recognition. To evaluate the effectiveness and efficiency of MV-TSHGNN, we conduct experiments on NTU RGB+D, NTU RGB+D 120 and imitating traffic police gestures datasets. The experimental results indicate that our proposed method model achieves the new state-of-the-art performance 
650 4 |a Journal Article 
700 1 |a Wu, Zhixuan  |e verfasserin  |4 aut 
700 1 |a Feng, Yifan  |e verfasserin  |4 aut 
700 1 |a Wang, Cheng  |e verfasserin  |4 aut 
700 1 |a Gao, Yue  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 03., Seite 3301-3313  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:03  |g pages:3301-3313 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3391913  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 03  |h 3301-3313