Global synthesis on the response of soil microbial necromass carbon to climate-smart agriculture

© 2024 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 30(2024), 5 vom: 03. Mai, Seite e17302
1. Verfasser: Li, Yüze (VerfasserIn)
Weitere Verfasser: Wang, Shengnan, Yang, Yali, Ren, Liang, Wang, Ziting, Liao, Yuncheng, Yong, Taiwen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't climate change meta‐analysis microbial anabolism microbial carbon pump soil organic carbon Carbon 7440-44-0 Soil
Beschreibung
Zusammenfassung:© 2024 John Wiley & Sons Ltd.
Climate-smart agriculture (CSA) supports the sustainability of crop production and food security, and benefiting soil carbon storage. Despite the critical importance of microorganisms in the carbon cycle, systematic investigations on the influence of CSA on soil microbial necromass carbon and its driving factors are still limited. We evaluated 472 observations from 73 peer-reviewed articles to show that, compared to conventional practice, CSA generally increased soil microbial necromass carbon concentrations by 18.24%. These benefits to soil microbial necromass carbon, as assessed by amino sugar biomarkers, are complex and influenced by a variety of soil, climatic, spatial, and biological factors. Changes in living microbial biomass are the most significant predictor of total, fungal, and bacterial necromass carbon affected by CSA; in 61.9%-67.3% of paired observations, the CSA measures simultaneously increased living microbial biomass and microbial necromass carbon. Land restoration and nutrient management therein largely promoted microbial necromass carbon storage, while cover crop has a minor effect. Additionally, the effects were directly influenced by elevation and mean annual temperature, and indirectly by soil texture and initial organic carbon content. In the optimal scenario, the potential global carbon accrual rate of CSA through microbial necromass is approximately 980 Mt C year-1, assuming organic amendment is included following conservation tillage and appropriate land restoration. In conclusion, our study suggests that increasing soil microbial necromass carbon through CSA provides a vital way of mitigating carbon loss. This emphasizes the invisible yet significant influence of soil microbial anabolic activity on global carbon dynamics
Beschreibung:Date Completed 03.05.2024
Date Revised 03.05.2024
published: Print
Citation Status MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.17302