Efficient Large-Area (81 cm2) Ternary Copper Halides Light-Emitting Diodes with External Quantum Efficiency Exceeding 13% via Host-Guest Strategy

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 29 vom: 15. Juli, Seite e2313570
1. Verfasser: Lin, Shuailing (VerfasserIn)
Weitere Verfasser: Ma, Zhuangzhuang, Ji, Xinzhen, Zhou, Qicong, Chu, Weihong, Zhang, Jibin, Liu, Ying, Han, Yanbing, Lian, Linyuan, Jia, Mochen, Chen, Xu, Wu, Di, Li, Xinjian, Zhang, Yu, Shan, Chongxin, Shi, Zhifeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article energy level alignment host‐guest strategy large‐area light‐emitting diodes ternary copper halides
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Ternary copper (Cu) halides are promising candidates for replacing toxic lead halides in the field of perovskite light-emitting diodes (LEDs) toward practical applications. However, the electroluminescent performance of Cu halide-based LEDs remains a great challenge due to the presence of serious nonradiative recombination and inefficient charge transport in Cu halide emitters. Here, the rational design of host-guest [dppb]2Cu2I2 (dppb denotes 1,2-bis[diphenylphosphino]benzene) emitters and its utility in fabricating efficient Cu halide-based green LEDs that show a high external quantum efficiency (EQE) of 13.39% are reported. The host-guest [dppb]2Cu2I2 emitters with mCP (1,3-bis(N-carbazolyl)benzene) host demonstrate a significant improvement of carrier radiative recombination efficiency, with the photoluminescence quantum yield increased by nearly ten times, which is rooted in the efficient energy transfer and type-I energy level alignment between [dppb]2Cu2I2 and mCP. Moreover, the charge-transporting mCP host can raise the carrier mobility of [dppb]2Cu2I2 films, thereby enhancing the charge transport and recombination. More importantly, this strategy enables a large-area prototype LED with a record-breaking area up to 81 cm2, along with a decent EQE of 10.02% and uniform luminance. It is believed these results represent an encouraging stepping stone to bring Cu halide-based LEDs from the laboratory toward commercial lighting and display panels
Beschreibung:Date Revised 18.07.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202313570