Robust Superhydrophobic Films Based on an Eco-Friendly Poly(l-lactic acid)/Cellulose Composite with Controllable Water Adhesion

Poly(l-lactic acid) (PLLA) featuring desirable biodegradability and biocompatibility has been recognized as one of the promising eco-friendly biomaterials. However, low crystallization and poor mechanical and chemical performances dramatically hamper its practical application. In this work, we repor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 19 vom: 14. Mai, Seite 10362-10373
1. Verfasser: Chen, Xuefeng (VerfasserIn)
Weitere Verfasser: Zhong, Lingqi, Gong, Xiao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Poly(l-lactic acid) (PLLA) featuring desirable biodegradability and biocompatibility has been recognized as one of the promising eco-friendly biomaterials. However, low crystallization and poor mechanical and chemical performances dramatically hamper its practical application. In this work, we report that functionalized cellulose/PLLA composite superhydrophobic stereocomplex films with controllable water adhesion and protein adsorption can be fabricated by a facile approach for the first time. First, cellulose is surface-modified by means of two silanization modification methods. Then, superhydrophobic cellulose/PLLA composite films are prepared through a solvent-evaporation-induced phase separation method. The two cellulose/PLLA composite films exhibit extreme water repellency but tunable water adhesion from sticky to slippery. The protein adsorption capacity of the cellulose/PLLA composite films can also be regulated. In addition, the stereocomplexation of the composite film provides excellent mechanical properties with an elongation at break of 22.36%, which is 237.8% higher than that of a pure PLLA film, which is more suitable for biomaterials. Furthermore, good biodegradability of the PLLA composite films in nature enables the bio-based composites as alternative materials to replace conventional petroleum-based polymers. The superhydrophobic films have also been demonstrated for many applications, including slippery surfaces, liquid transportation without loss, and antifouling
Beschreibung:Date Revised 14.05.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.4c01077