Preparation of Superhydrophobic Coating on X80 Steel and Its Corrosion Resistance in Oilfield Produced Water

Corrosion is an unavoidable issue that steel encounters during service; however, the generic methods employed for corrosion prevention often need high cost or preparation conditions. In this study, a facile chemical replacement deposition method was proposed to realize an anticorrosion superhydropho...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 40(2024), 19 vom: 14. Mai, Seite 10250-10260
1. Verfasser: Yang, Fanxi (VerfasserIn)
Weitere Verfasser: Zhang, Jinling, Pan, Jie, Liu, Yangli, Yu, Yanchong, Wang, Shebin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Corrosion is an unavoidable issue that steel encounters during service; however, the generic methods employed for corrosion prevention often need high cost or preparation conditions. In this study, a facile chemical replacement deposition method was proposed to realize an anticorrosion superhydrophobic coating on a X80 steel surface. The growth mechanism of the rough structure and its impact on the wettability of the superhydrophobic coating were analyzed. The superhydrophobic coating, deposited for 50 s and modified for 30 min, achieved optimal electrochemical properties and a maximum water contact angle. The immersion test, in the saturated CO2 oilfield produced water, demonstrated the better corrosion resistance of superhydrophobic coating than X80 steel. Correspondingly, a kinetic corrosion model was established to analyze the anticorrosion mechanism. In summary, this method significantly improves the corrosion resistance of X80 steel and is attractive for other industrial fields
Beschreibung:Date Revised 14.05.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.4c00687