Strong Interaction between Titanium Carbonitride Embedded in Mesoporous Carbon Nanofibers and Pt Enables Durable Oxygen Reduction

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 28 vom: 30. Juli, Seite e2400808
1. Verfasser: Zhou, Siwen (VerfasserIn)
Weitere Verfasser: Bi, Wentuan, Zhang, Jujia, He, Lijuan, Yu, Yanghong, Wang, Minghao, Yu, XinXin, Xie, Yi, Wu, Changzheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article carbon corrosion oxygen reduction reaction porous nanofibers strong metal–support interaction titanium carbonitride
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Platinum (Pt) supported on high surface area carbon has been the most widely used electrocatalyst in proton exchange membrane fuel cell (PEMFC). However, conventional carbon supports are susceptible to corrosion at high potentials, leading to severe degradation of electrochemical performance. In this work, titanium carbonitride embedded in mesoporous carbon nanofibers (m-TiCN NFs) are reported as a promising alternative to address this issue. Benefiting from the interpenetrating conductive pathways inside the one-dimensional (1D) nanostructures and the embedded TiCN nanoparticles (NPs), m-TiCN NFs exhibit excellent stability at high potentials and interact strongly with Pt NPs. Subsequently, m-TiCN NFs-supported Pt NPs deliver remarkably enhanced oxygen reduction reaction (ORR) activity and durability, with negligible activity decay and less than 5% loss of electrochemical surface area(ECSA) after 50 000 cycles. Moreover, the fuel cell assembled by this catalyst delivers a maximum power density of 1.22 W cm-2 and merely 3% loss after 30 000 cycles of accelerated durability tests under U.S. Department of Energy (DOE) protocols. The improved ORR activity and durability are attributed to the superior corrosion resistance of the m-TiCN NF support and the strong interaction between Pt and m-TiCN NFs
Beschreibung:Date Revised 12.07.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202400808