Synergistic Effect of Asphaltene, Resin, and Wax Improving the Emulsification and Interfacial Properties of a High-Phase-Inversion Thin Oil
Nowadays, high-phase-inversion in situ emulsification technology has shown great potential in enhancing oil recovery from high-water-cut thin-oil reservoirs. However, emulsification characteristics, interfacial properties, and the mechanism of high phase inversion have not been systematically descri...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 19 vom: 14. Mai, Seite 9892-9910 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Nowadays, high-phase-inversion in situ emulsification technology has shown great potential in enhancing oil recovery from high-water-cut thin-oil reservoirs. However, emulsification characteristics, interfacial properties, and the mechanism of high phase inversion have not been systematically described. In this study, an emulsification experiment was conducted to investigate the effects of shear time, shear rate, and temperature on the phase inversion of thin oil. Furthermore, the influence of resin and wax on the dispersion of asphaltene was studied through microscopic morphology analysis. Interfacial tension measurement and interfacial viscoelasticity analysis were carried out to determine the interaction characteristics of asphaltene, resin, and wax at the interface. The results showed that, at 50 °C, the phase-inversion point of thin oil reached as high as 75%, and even at 60 °C, it remained at 70%. The shear time and shear rate did not affect the phase-inversion point of thin oil, while an increase in temperature led to a decrease in the phase-inversion point. Moreover, compared to the 20% phase-inversion point of base oil, the phase-inversion point increased with different proportions of asphaltene, resin, and wax. Particularly, at the ratio of asphaltene/resin/wax = 1:5:9, the phase-inversion point reached as high as 80%, indicating the optimal state. In this proportion, asphaltene aggregates exhibited the smallest and most uniform size, best dispersion, lower interfacial tension, and higher interfacial modulus. These findings provide reference and guidance for further enhancing oil recovery in medium-to-high-water-cut thin-oil reservoirs |
---|---|
Beschreibung: | Date Revised 14.05.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.3c03319 |