Implanted Carbon Nanotubes Harvest Electrical Energy from Heartbeat for Medical Implants

© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 32 vom: 27. Aug., Seite e2313688
1. Verfasser: Ruhparwar, Arjang (VerfasserIn)
Weitere Verfasser: Osswald, Anja, Kim, Heewoo, Wakili, Reza, Müller, Jan, Pizanis, Nikolaus, Al-Rashid, Fadi, Hendgen-Cotta, Ulrike, Rassaf, Tienush, Kim, Seon Jeong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article biomechanical energy carbon nanotubes cardiac pacemaker energy harvesting polymer devices Nanotubes, Carbon
LEADER 01000caa a22002652 4500
001 NLM371739233
003 DE-627
005 20240808233011.0
007 cr uuu---uuuuu
008 240501s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202313688  |2 doi 
028 5 2 |a pubmed24n1495.xml 
035 |a (DE-627)NLM371739233 
035 |a (NLM)38685135 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ruhparwar, Arjang  |e verfasserin  |4 aut 
245 1 0 |a Implanted Carbon Nanotubes Harvest Electrical Energy from Heartbeat for Medical Implants 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.08.2024 
500 |a Date Revised 08.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH. 
520 |a Reliability of power supply for current implantable electronic devices is a critical issue for longevity and for reducing the risk of device failure. Energy harvesting is an emerging technology, representing a strategy for establishing autonomous power supply by utilizing biomechanical movements in human body. Here, a novel "Twistron energy cell harvester" (TECH), consisting of coiled carbon nanotube yarn that converts mechanical energy of the beating heart into electrical energy, is presented. The performance of TECH is evaluated in an in vitro artificial heartbeat system which simulates the deformation pattern of the cardiac surface, reaching a maximum peak power of 1.42 W kg-1 and average power of 0.39 W kg-1 at 60 beats per minute. In vivo implantation of TECH onto the left ventricular surface in a porcine model continuously generates electrical energy from cardiac contraction. The generated electrical energy is used for direct pacing of the heart as documented by extensive electrophysiology mapping. Implanted modified carbon nanotubes are applicable as a source for harvesting biomechanical energy from cardiac motion for power supply or cardiac pacing 
650 4 |a Journal Article 
650 4 |a biomechanical energy 
650 4 |a carbon nanotubes 
650 4 |a cardiac pacemaker 
650 4 |a energy harvesting 
650 4 |a polymer devices 
650 7 |a Nanotubes, Carbon  |2 NLM 
700 1 |a Osswald, Anja  |e verfasserin  |4 aut 
700 1 |a Kim, Heewoo  |e verfasserin  |4 aut 
700 1 |a Wakili, Reza  |e verfasserin  |4 aut 
700 1 |a Müller, Jan  |e verfasserin  |4 aut 
700 1 |a Pizanis, Nikolaus  |e verfasserin  |4 aut 
700 1 |a Al-Rashid, Fadi  |e verfasserin  |4 aut 
700 1 |a Hendgen-Cotta, Ulrike  |e verfasserin  |4 aut 
700 1 |a Rassaf, Tienush  |e verfasserin  |4 aut 
700 1 |a Kim, Seon Jeong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 32 vom: 27. Aug., Seite e2313688  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:32  |g day:27  |g month:08  |g pages:e2313688 
856 4 0 |u http://dx.doi.org/10.1002/adma.202313688  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 32  |b 27  |c 08  |h e2313688