|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM371725275 |
003 |
DE-627 |
005 |
20241108232142.0 |
007 |
cr uuu---uuuuu |
008 |
240501s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2024.3393730
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1594.xml
|
035 |
|
|
|a (DE-627)NLM371725275
|
035 |
|
|
|a (NLM)38683715
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Qi, Zhaobo
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Uncertainty-Boosted Robust Video Activity Anticipation
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 08.11.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Video activity anticipation aims to predict what will happen in the future, embracing a broad application prospect ranging from robot vision and autonomous driving. Despite the recent progress, the data uncertainty issue, reflected as the content evolution process and dynamic correlation in event labels, has been somehow ignored. This reduces the model generalization ability and deep understanding on video content, leading to serious error accumulation and degraded performance. In this paper, we address the uncertainty learning problem and propose an uncertainty-boosted robust video activity anticipation framework, which generates uncertainty values to indicate the credibility of the anticipation results. The uncertainty value is used to derive a temperature parameter in the softmax function to modulate the predicted target activity distribution. To guarantee the distribution adjustment, we construct a reasonable target activity label representation by incorporating the activity evolution from the temporal class correlation and the semantic relationship. Moreover, we quantify the uncertainty into relative values by comparing the uncertainty among sample pairs and their temporal-lengths. This relative strategy provides a more accessible way in uncertainty modeling than quantifying the absolute uncertainty values on the whole dataset. Experiments on multiple backbones and benchmarks show our framework achieves promising performance and better robustness/interpretability
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Wang, Shuhui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Weigang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Qingming
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 46(2024), 12 vom: 07. Nov., Seite 7775-7792
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:46
|g year:2024
|g number:12
|g day:07
|g month:11
|g pages:7775-7792
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2024.3393730
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 46
|j 2024
|e 12
|b 07
|c 11
|h 7775-7792
|