A Versatile Framework for Multi-Scene Person Re-Identification

Person Re-identification (ReID) has been extensively developed for a decade in order to learn the association of images of the same person across non-overlapping camera views. To overcome significant variations between images across camera views, mountains of variants of ReID models were developed f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 3 vom: 11. März, Seite 1362-1380
1. Verfasser: Zheng, Wei-Shi (VerfasserIn)
Weitere Verfasser: Yan, Junkai, Peng, Yi-Xing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM371725186
003 DE-627
005 20250508052205.0
007 cr uuu---uuuuu
008 240501s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3381184  |2 doi 
028 5 2 |a pubmed25n1332.xml 
035 |a (DE-627)NLM371725186 
035 |a (NLM)38683711 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zheng, Wei-Shi  |e verfasserin  |4 aut 
245 1 2 |a A Versatile Framework for Multi-Scene Person Re-Identification 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.03.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Person Re-identification (ReID) has been extensively developed for a decade in order to learn the association of images of the same person across non-overlapping camera views. To overcome significant variations between images across camera views, mountains of variants of ReID models were developed for solving a number of challenges, such as resolution change, clothing change, occlusion, modality change, and so on. Despite the impressive performance of many ReID variants, these variants typically function distinctly and cannot be applied to other challenges. To our best knowledge, there is no versatile ReID model that can handle various ReID challenges at the same time. This work contributes to the first attempt at learning a versatile ReID model to solve such a problem. Our main idea is to form a two-stage prompt-based twin modeling framework called VersReID. Our VersReID firstly leverages the scene label to train a ReID Bank that contains abundant knowledge for handling various scenes, where several groups of scene-specific prompts are used to encode different scene-specific knowledge. In the second stage, we distill a V-Branch model with versatile prompts from the ReID Bank for adaptively solving the ReID of different scenes, eliminating the demand for scene labels during the inference stage. To facilitate training VersReID, we further introduce the multi-scene properties into self-supervised learning of ReID via a multi-scene prioris data augmentation (MPDA) strategy. Through extensive experiments, we demonstrate the success of learning an effective and versatile ReID model for handling ReID tasks under multi-scene conditions without manual assignment of scene labels in the inference stage, including general, low-resolution, clothing change, occlusion, and cross-modality scenes 
650 4 |a Journal Article 
700 1 |a Yan, Junkai  |e verfasserin  |4 aut 
700 1 |a Peng, Yi-Xing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 3 vom: 11. März, Seite 1362-1380  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:3  |g day:11  |g month:03  |g pages:1362-1380 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3381184  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 3  |b 11  |c 03  |h 1362-1380