Solar desalination system for fresh water production performance estimation in net-zero energy consumption building : A comparative study on various machine learning models

© 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 89(2024), 8 vom: 18. Apr., Seite 2149-2163
1. Verfasser: Alhamami, Ali Hussain (VerfasserIn)
Weitere Verfasser: Falude, Emmanuel, Ibrahim, Ahmed Osman, Dodo, Yakubu Aminu, Daniel, Okpakhalu Livingston, Atamurotov, Farruh
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Comparative Study environmental sustainability machine learning models water scarcity net-zero energy consumption renewable energy solar desalination water management
LEADER 01000caa a22002652c 4500
001 NLM371672562
003 DE-627
005 20250306034957.0
007 cr uuu---uuuuu
008 240429s2024 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2024.092  |2 doi 
028 5 2 |a pubmed25n1238.xml 
035 |a (DE-627)NLM371672562 
035 |a (NLM)38678415 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Alhamami, Ali Hussain  |e verfasserin  |4 aut 
245 1 0 |a Solar desalination system for fresh water production performance estimation in net-zero energy consumption building  |b A comparative study on various machine learning models 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.04.2024 
500 |a Date Revised 28.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/). 
520 |a This study employs diverse machine learning models, including classic artificial neural network (ANN), hybrid ANN models, and the imperialist competitive algorithm and emotional artificial neural network (EANN), to predict crucial parameters such as fresh water production and vapor temperatures. Evaluation metrics reveal the integrated ANN-ICA model outperforms the classic ANN, achieving a remarkable 20% reduction in mean squared error (MSE). The emotional artificial neural network (EANN) demonstrates superior accuracy, attaining an impressive 99% coefficient of determination (R2) in predicting freshwater production and vapor temperatures. The comprehensive comparative analysis extends to environmental assessments, displaying the solar desalination system's compatibility with renewable energy sources. Results highlight the potential for the proposed system to conserve water resources and reduce environmental impact, with a substantial decrease in total dissolved solids (TDS) from over 6,000 ppm to below 50 ppm. The findings underscore the efficacy of machine learning models in optimizing solar-driven desalination systems, providing valuable insights into their capabilities for addressing water scarcity challenges and contributing to the global shift toward sustainable and environmentally friendly water production methods 
650 4 |a Journal Article 
650 4 |a Comparative Study 
650 4 |a environmental sustainability 
650 4 |a machine learning models water scarcity 
650 4 |a net-zero energy consumption 
650 4 |a renewable energy 
650 4 |a solar desalination 
650 4 |a water management 
700 1 |a Falude, Emmanuel  |e verfasserin  |4 aut 
700 1 |a Ibrahim, Ahmed Osman  |e verfasserin  |4 aut 
700 1 |a Dodo, Yakubu Aminu  |e verfasserin  |4 aut 
700 1 |a Daniel, Okpakhalu Livingston  |e verfasserin  |4 aut 
700 1 |a Atamurotov, Farruh  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 89(2024), 8 vom: 18. Apr., Seite 2149-2163  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnas 
773 1 8 |g volume:89  |g year:2024  |g number:8  |g day:18  |g month:04  |g pages:2149-2163 
856 4 0 |u http://dx.doi.org/10.2166/wst.2024.092  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 89  |j 2024  |e 8  |b 18  |c 04  |h 2149-2163