Enhanced properties of a positive-charged nanofiltration membrane containing quaternarized chitosan through second interfacial polymerization for the removal of salts and pharmaceuticals
© 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons....
Veröffentlicht in: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 89(2024), 8 vom: 18. Apr., Seite 2020-2034 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Water science and technology : a journal of the International Association on Water Pollution Research |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't NF membrane PPCPs interfacial polymerization separation performance Chitosan 9012-76-4 Membranes, Artificial Water Pollutants, Chemical mehr... |
Zusammenfassung: | © 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc-nd/4.0/). Nanofiltration (NF) membrane technology has been widely used in the removal of salts and trace organic pollutants, such as pharmaceuticals and personal care products (PPCPs), due to its superiority. A positive-charged composite NF membrane with an active skin layer was prepared by polyethyleneimine (PEI), trimethyl benzene chloride, and quaternate chitosan (HTCC) through second interfacial polymerization on the polyethersulfone ultrafiltration membrane. The physicochemical properties of the nanocomposite membrane were investigated using surface morphology, hydrophilicity, surface charge, and molecular weight cut-off (MWCO). The influence of the concentration and reaction time of PEI and HTCC was documented. The optimized membrane had a MWCO of about 481 Da and possessed a pure water permeability of 25.37 L·m-2·h-1·MPa-1. The results also exhibited salt rejection ability as MgCl2 > CaCl2 > MgSO4 > Na2SO4 > NaCl > KCl, showing a positive charge on the fabricated membrane. In addition, the membrane had higher rejection to atenolol, carbamazepine, amlodipine, and ibuprofen at 89.46, 86.02, 90.12, and 77.21%, respectively. Moreover, the anti-fouling performance and stability of the NF membrane were also improved |
---|---|
Beschreibung: | Date Completed 28.04.2024 Date Revised 28.04.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 0273-1223 |
DOI: | 10.2166/wst.2024.109 |